• Title/Summary/Keyword: 리트로핏

Search Result 5, Processing Time 0.017 seconds

Efficiency of Energy Performance Improvement by Retrofit in existing Buildings (기존 건축물의 리트로핏에 따른 에너지 성능개선 효과 분석)

  • Kim, Dong-Hee;Moon, Hyunseok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.126-127
    • /
    • 2016
  • The Korean government has developed and strengthened energy related regulations to pursue eco-friendly buildings since 1979. However, required design standards for energy based quantitative studies focused on energy performance in existing buildings are meagered. Therefore in this study, required energy performance by design standards for energy are analyzed. And a energy performance by retrofits for insulation improvement is studied using energy simulations.

  • PDF

Energy efficiency retrofit package plan for existing buildings (기존 건축물의 에너지 효율화 리트로핏 패키지 방안)

  • Kim, Su Min;Cho, Hyun Mi
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.95-101
    • /
    • 2020
  • In the past few decades, the global population growth and rapid economic development have resulted in significant increases in building energy consumption. To reduce greenhouse-gas emissions and building energy consumption, building materials and energy technologies must be optimized. Building retrofitting is a more efficient method than reconstruction to improve the building energy performance. In order to improve the energy performance of existing buildings, this study proposed energy-efficiency retrofit plans and derived cost-effective retrofit plan. The energy efficient retrofit method is achieved through the packaging of energy technology and the energy and cost reduction effect of the energy efficiency retrofit package are analyzed. As a result of the study, the energy-efficiency retrofit package showed an energy reduction effect of up to 60% or more and a construction cost reduction of about 30%. This study argues that optimal energy and construction cost reduction of existing buildings are possible through the packaging of energy efficiency technology.

The Reduction of Energy Consumption by the Exterior Horizontal Shading Device during Design for the Retrofit of Public Buildings (공공청사 리트로핏 설계 시 외부 수평 차양 장치에 따른 에너지 소비량 절감 방안)

  • Auh, Jin Sun;Jang, Ji-Hoon;Leigh, Seung-Bok;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.17 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: Recently, significant heat loss through the window takes place in buildings. Nevertheless, there exists little literature concerning the exterior horizontal shading devices and the design criteria are not clearly settled yet. Applying the exterior horizontal shading devices is more efficient as compared to the interior shading devices in that solar radiation can be directly blocked before passing through the window or the envelope. The purpose of this study is to reduce the internal load by designing the exterior horizontal shading devices and verify the degree of reduction in energy consumption. Method: This study aims to reduce energy consumption in cooling and heating through proposing proper length and shape of the exterior horizontal shading devices in public buildings. In the process, actual energy data and the Design Builder simulation program are utilized. In addition, economic aspect is considered to figure out the optimal length of the exterior horizontal shading devices that maximizes efficiency. Result: As a result, the proper length and shape of the exterior horizontal shading devices are provided as follows: 1) Energy consumption in cooling and heating is minimized when the exterior horizontal shading devices are designed as 0.5m*2. 2) Electricity bill is the lowest when the exterior horizontal shading devices are designed as 3.3m*2. The gap between maximum and minimum electricity bill is about 7.8~14%.

Multi-alternative Retrofit Modelling and its Application to Korean Generation Capacity Expansion Planning (발전설비확장계획에서 다중대안 리트로핏 모형화 방안 및 사례연구)

  • Chung, Yong Joo
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.75-91
    • /
    • 2020
  • Purpose Retrofit, defined to be addition of new technologies or features to the old system to increase efficiency or to abate GHG emissions, is considered as an important alternative for the old coal-fired power plant. The purpose of this study is to propose mathematical method to model multiple alternative retrofit in Generation Capacity Expansion Planning(GCEP) problem, and to get insight to the retrofit patterns from realistic case studies. Design/methodology/approach This study made a multi-alternative retrofit GECP model by adopting some new variables and equations to the existing GECP model. Added variables and equations are to ensure the retrofit feature that the life time of retrofitted plant is the remaining life time of the old power plant. We formulated such that multiple retrofit alternatives are simultaneously compared and the best retrofit alternative can be selected. And we found that old approach to model retrofit has a problem that old plant with long remaining life time is retrofitted earlier than the one with short remaining life time, fixed the problem by some constraints with some binary variables. Therefore, the proposed model is formulated into a mixed binary programming problem, and coded and run using the GAMS/cplex. Findings According to the empirical analysis result, we found that approach to model the multiple alternative retrofit proposed in this study is comparing simultaneously multiple retrofit alternatives and select the best retrofit satisfying the retrofit features related to the life time. And we found that retrofit order problem is cleared. In addition, the model is expected to be very useful in evaluating and developing the national policies concerning coal-fired power plant retrofit.

A Study on the Performance Analysis of the High Pressure - Intermediate Pressure Steam Turbine Model for Co-generation Plants using Commercial Programs (상용 프로그램을 이용한 열병합 발전용 고압(HP)-중압(IP) 증기터빈 모델의 성능해석에 대한 연구)

  • Jong Pil Won;Seung Tae Oh;Jungmo Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.395-406
    • /
    • 2023
  • The first technological advance to improve the output and efficiency of the latest steam turbines operating in co-generation plants in Korea can be said to be progress in the field of materials that can use high-temperature, high-pressures steam. As a result of design efforts to improve the internal efficiency of steam turbines along with the development of materials, only a few manufacturers of steam turbine have produced high efficiency steam turbines. The internal efficiency of a steam turbine on the steam path operating for a long period of time is gradually lost owing to the limit of mechanical life, and efficiency and output decrease. Therefore, this study aims to develop a model that can analyze the steam flow path performance of HP (High Pressure) and IP (Intermediate Pressure) steam turbine for a co-generation plant using a commercial program and propose a performance calculation method. Owing to the complex performance calculation method of steam turbines, major variables are presented to serve as practically useful references for steam turbine practitioners. In addition, the thermal dynamic analysis(such as heat balance diagram calculation) and the the thermal dynamic calculation required for steam turbine performance calculation and the suitability of the steam turbine performance calculation results were compared with the performance test results.