• Title/Summary/Keyword: 리튬 2차전지

Search Result 147, Processing Time 0.027 seconds

Effect of Black Sugar as a Reducing Agent of $Fe^{3+}$ on the Synthesis and Properties of $LiFePO_4$ ($Fe^{3+}$ 환원제로서 흑설탕이 $LiFePO_4$ 합성 및 특성에 미치는 영향)

  • Kim, Woo-Hyun;Lee, Min-Woo;Kang, Chan-Hyoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.248-248
    • /
    • 2010
  • 리튬이온 2차전지의 대체 양극 후보 물질인 $LiFePO_4$를 합성하기 위하여 출발원료로 $Li_2CO_3$, $Fe_2O_3$, $NH_4H_2PO_4$를 사용하여 볼밀 방법으로 혼합 분쇄한 후 열처리를 실시하였다. 합성 시에 3가 Fe를 2가로 환원시키기 위하여 $C_{12}H_{22}O_{11}$(흑설탕)을 출발원료와 함께 5 ~ 12 wt%로 나눠서 첨가하였다. 합성 후 XRD로 결정구조의 양질성을 확인하였고. FE-SEM으로 나노미터 크기의 구형 입자를 관찰하였다. XRF를 이용하여 3 ~ 10 wt%의 탄소 잔량을 확인하였다. 전기화학적 특성을 충 방전시험기로 평가한 결과, 8wt%의 탄소원을 첨가한 $LiFePO_4$에서 가장 좋은 수명 특성을 얻었고, 최대 145 mAh/g의 방전용량을 얻었다.

  • PDF

Effect of Annealing Temperature on the Anode Properties of TiO2 Nanotubes for Rechargeable Lithium Batteries (열처리 온도에 따른 TiO2 나노튜브의 리튬이차전지 음전극 특성)

  • Choi, Min Gyu;Kang, Kun Young;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • $TiO_2$ nanotubes are prepared from rutile prticles via an alkaline hydrothermal synthesis and the consequent heat treatment at $300{\sim}500^{\circ}C$. The physical and electrochemical properties of the $TiO_2$ nanotubes are characterized for use as a anode material of rechargeable lithium battery. In particular, the microscale dusts as an impurity component occurred in the purification step after the hydrothermal reaction are completely removed to yield $TiO_2$ nanotube with a higher specific surface area and more obvious crystalline phases. As the annealing temperature increases, the specific surface area is slightly decreased due to some aggregation between the isotropically dispersed nanotubes. Highest initial discharge capacity of 250 mAh $g^{-1}$ is achieved for the $TiO_2$ nanotube annealed at $300^{\circ}C$, whereas the $400^{\circ}C$ $TiO_2$ nanotube shows the superior cycle performance and high-rate capability.

Impedance Estimation for Lithium Secondary Battery According to 1D Thermal Modeling (리튬 2차 전지의 1차원 열적 특성을 고려한 임피던스예측)

  • Lee, Jung-Su;Lim, Geun-Wook;Kim, Kwang-Sun;Cho, Hyun-Chan;Yoo, Sang-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.13-17
    • /
    • 2008
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a thermal model that estimate the impedance of battery by experiment & simulation. In this one-dimensional model, Seven governing equations are made to solve seven variables c, $c_s,\;\Phi_1,\;\Phi_2,\;i_2$, j and T. The thermal model parameters used in this model have been adjusted according to the experimental data measured in the laboratory. The result(Voc, Impedance) of this research can be used in BMS(Battery Management System), so an efficient method of using battery is developed.

  • PDF

Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics (K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.590-592
    • /
    • 2010
  • Li-Mn spinel ($LiMn_2O_4$) is prepared by a hydrothermal process with K-Birnessite ($KMnO_4{\cdot}yH_2O$) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [$KMnO_4$] and urea [$CO(NH_2)_2$] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of $117\;mAhg^{-1}$ when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.

A study on the Spinel phase cathode materials with high capacity for lithium secondary batteries (리튬 2차 전지용 고용량 스피넬계 양극물질 연구)

  • Hong, Ki-Joo;Sun, Yang-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.106-108
    • /
    • 2001
  • As 3V cathode material, a new doping spinel material, LiMn1.6Se0.4O4 powder with a phase-pure polycrystalline was synthesized by a sol-gel method. In spite of Jahn-teller distortion in 3V region($2.4{\sim}3.5V$), the LiMn1.6Se0.4O4 electrode shows no capacity loss. The material in the 3V region initially delivers a discharge capacity of 100mAh/g which increase with cycling to reach 105mAh/g after 90cycles. And 5V cathode material LiNi0.5-xMxMn1.5O4(M=Cr, V, Fe) compounds have been synthesized by sol-gel method. a series of electroactive spinel compounds, LiNi0.5-xMxMn1.5O4(M=Cr, V, Fe) has been studied by crystallographic and electrochemical methods. The material presents only one plateau at around 4.5 V vs. Li/Li+ with a large discharge capacity of 152mAh/g and fairly good cyclability.

  • PDF

The Study on Thermal Modeling and Charge Capacity Estimation for Lithium Secondary Battery (리튬 2차 전지의 열적 모델링 및 용량 예측에 관한 연구)

  • Kim, Jong-Won;Cho, Hyun-Chan;Kim, Kwang-Sun;Jo, Jang-Gun;Lee, Jung-Su;Hu, Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, the intelligent estimation algorithm is developed for residual quantity estimate of lithium secondary cell and we suggest the control algorithm to get battery SOC through thermal modeling of electric cell. Lithium secondary cell gives cycle life, charge characteristic, discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc. Therefore, we make an accurate estimate of the capacity of battery according to thermal modeling to know the capacity of electric cell that is decreased by various special quality of lithium secondary cell. And we show effectiveness through comparison of value as result that use simulation and fuzzy logic.

  • PDF

Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles (전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석)

  • Oh, Eui-young;Min, Dong Seok;Han, Ji Yun;Jung, Seungho;Kang, Tae-sun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • As the market for portable electronic devices expands, the demand for Lithium Ion Battery (LIB) is also increasing. LIB has higher efficiency than other secondary batteries, but there is a risk of explosion / fire due to thermal runaway reaction. Especially, Electric Vehicles (EV) equipped with a large capacity LIB cell also has a danger due to a large amount of toxic gas generated by a fire. Therefore, it is necessary to analyze the risk of toxic gas generated by EV fire to minimize accident damage. In this study, the flow of toxic gas generated by EV fire was numerically analyzed using Computational Fluid Dynamic. Scenarios were established based on literature data and EV data to confirm the effect distance according to time and exposure standard. The purpose of this study is to analyze the risk of toxic gas caused by EV fire and to help minimize the loss of life and property caused by accidents.

Synthesis and Characterization of Li-Graphite intercalation Compounds (리튬-흑연 층간 화합물의 합성 및 특성)

  • Oh, Won-Chun;Kim, Myung-Kun;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 1994
  • Li-GICs as a high performance energy storager were synthesized as a function of the Li content by the admixture and add-pressure method. The characteristics of these prepared compounds have been determined from the studies by X-ray diffraction, UV-VIS spectrometry and CHN analysis. It follows from the results of X-ray diffraction that the lower-stage intercalation compounds are formed as the Li contents increase, however the mixed stages in these compounds are also observed. In the case of the $Li_{40wt%}$, the compound with the structure of stage 1 has been predominently, but the structure of only stage 1 is not obtained. The $d_{001}$ value of stage 1 was determined to be ca. $3.70{\AA}$. An analysis of spectrometric data shows that each of the compounds gives distingushible energy state spectra. It is seen from the spectra that the positions of $R_{min}$ values, with increase in the Li contents, are shifted in the region of higher energy state. Such a result can be attributed to the formation of stable stages. The results of CHN analysis allow us to find the mixing state related to chemical compositions of the intercalated compounds and the superiority to admixture and add-pressure method. From the results determined, it reveals that $Li_{10wt%}$-GIC and $Li_{20wt%}$-GIC can be utilized for an anode of rechargable battery.

  • PDF

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea (국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안)

  • Oh, Il-Hwan;Heo, Chul-Ho;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.399-406
    • /
    • 2022
  • In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.

리튬 2차전지 anode용 탄소재료 구조의 방전용량에 대한 영향

  • 양철민;양갑승
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.124-130
    • /
    • 1996
  • The hydrocarbons containing more than 10 carbons(0.1% of total volume, C10+), residue of aromatization from aliphatic hydrocarbons, were condensated in the presence of catalyst aluminumchloride and cocatalyst nitrobenzene(NB) to be pitchs with desirable properties. The properties of pitch were affected by the concentration of cocatalyst chosen 20 and 30wt.%. The pitch with 30wt.% NB showed higher carbon yield and lower crystallinity than that with 20wt.% NB. The two pitches were heat treated at 1000C and measured of charge/discharge capacity of the carbon as an anode. The carbon prepared at 20wt.% NB exhibited excellent cyclic stability with a capacity of 218mAh/.g and that at 30wt.% exhibited rather low cyclic stability with higher capacity of 235mAh/g.

  • PDF