• Title/Summary/Keyword: 리튬 2차전지

Search Result 147, Processing Time 0.027 seconds

리튬 2차 전지의 1차원 열적 특성을 고려한 지능형 용량예측

  • Lee, Jeong-Su;Ho, Bin;Kim, Gwang-Seon;Im, Geun-Uk;Jo, Jang-Gun;Jo, Hyeon-Chan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.244-249
    • /
    • 2007
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as cycle life, charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a mathematical model of battery. In this one-dimensional model, Seven governing equations are made to solve seven variables $c,\;c_s,\;{\Phi}_1,\;{\Phi}_2,\;i_2,\;j\;and\;T$. The mathematical model parameters used in this model have been adjusted according to the experimental data measured in our lab. The connecting research of this study is to get an accurate estimate of the capacity of battery through comparison of results from simulation and fuzzy logic system. So the result data from this study is reorganized to fit the fuzzy logic algorithm.

  • PDF

The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries (리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성)

  • 김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

Charge/discharge Properties of Flyash as a function of Electrolyte for Lithium Rechargeable Battery (전해질 종류에 따른 Flyash의 리튬 2차전지의 충방전 특성)

  • 송희웅;김종욱;이경섭;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.362-365
    • /
    • 1999
  • The electrochemical properties of flyash obtained from combustion of fuel in fossil power plants and their performance as anode material of secondary battery have been investigated Various flysh pellets molded at various molding pressure have been used as anode lithium secondary battery. The best Performance was achieved when flyash pellet molded at pressure of 400kgf/$\textrm{cm}^2$ is utilized, that is, charge capacity of 300kgf/$\textrm{cm}^2$ and Coulombic efficiency of larger than 95% have been achieved. In addition, this battery exhibited good cycling performance. Considering these results, we predicted that utilization of the flyash as anode material and polyaniline conducting polymer as cathode material in a secondary will show capacity of 300mAh/g and Coulombic efficiency of higher than 95%.

  • PDF

Measurement of Combustible Characteristics of EC(Ethylene Carbonate) for Battery Electrolyte Organic Solvent (배터리 전해질 유기용매인 EC(Ethylene Carbonate)의 연소특성치 측정)

  • Yu-Ri Jang;Yu-Seon Jang;Jae-Jun Choi;Dong-Myeong Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.50-55
    • /
    • 2023
  • Lithium-ion secondary batteries are currently in high demand and supply. The purpose of this study is to secure the safety of the process by studying the combustion characteristics of EC(Ethylene Carbonate), Which is mainly used as an electrolyte organic solvent for lithium ion batteries. The flash points of the EC by using Setaflash and Pensky-Martens closed-cup testers were experimented at 141 ℃ and 143 ℃, respectively. The flash points of the EC by Tag and Cleveland open cup testers were experimented at 152 ℃ and 156 ℃, respectively. The AIT(Auto Ignition Temperature) of the EC was experimented at 420 ℃. The LEL(Lower Explosive Limit) calculated by using lower flash point of Setaflash was calculated at 3.6 Vol.%.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries (리튬이차전지의 과충전에 의한 열폭주 현상의 이해)

  • Minseo Lee;Ji-sun You;Kyeong-sin Kang;Jaesung Lee;Sungyool Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.55-72
    • /
    • 2024
  • Secondary batteries are used as an essential renewable energy source in our lives, such as electric vehicles and energy storage systems (ESS), as an alternative to fossil fuels due to global warming. However, cases of battery fires and explosions have been reported due to thermal runaway in secondary batteries due to various causes such as overdischarge, high-speed charging and discharging, and external short circuit, and great efforts are being made to find solutions suitable for each cause. In particular, as cases presumed to be caused by the overcharging process have been reported, this review will examine the chemical reactions of secondary batteries that can occur during the overcharging process and discuss risk investigation methods to check and prevent them.

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.

Thick Positive Electrode using Polytetrafluorethylene (PTFE) Binder for High-Energy-Density Lithium-ion Batteries (높은 에너지 밀도의 리튬이온 이차전지를 위한 PTFE 바인더를 적용한 고로딩 양극)

  • Kang, Jeong Min;Kim, Hyoung Woo;Jang, Young Seok;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • Many researchers have increased the loading level of electrodes to improve the energy density of secondary batteries. In this study, high-loading NCM523 (LiNi0.5Co0.2Mn0.3O2) positive electrode is manufactured using a polytetrafluoroethylene (PTFE) binder, not the conventional polyvinylidene fluoride (PVdF) binder, which has been commonly used in lithium-ion batteries. Through the kneading process using PTFE suspension, not the conventional slurry process using PVdF solution in N-methyl-2-pyrrolidinone (NMP), thick electrodes with high loading are easily manufactured. When the PTFE and PVdF-based electrodes are prepared at a loading level of 5.0 mAh/cm2, respectively, the PTFE-based electrode shows better cycle performance and rate capability than those of PVdF-based electrodes. The electrode manufactured by the kneading process using a PTFE binder has high electrode porosity due to insufficient roll-press, but the porosity can be lowered by high temperature roll-press over 120℃. However, there is no significant difference in cycle performance according to the roll press temperature. In addition, the cycle performance of the high loading electrode is slightly improved by increasing the content of the conductive material. Overall, the PTFE binder can improve the performance of the high loading electrode, but additional solutions will be needed.

Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes (리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF

Electrochemical Properties of Polyaniline Cathode for Lithium Secondary Batteries (리튬 2차 전지용 Polyaniline cathode의 전기화학적 특성)

  • Kim, H.C.;Kim, J.U.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1685-1687
    • /
    • 1996
  • Recently, conducting polymer has been much attracted as novel materials because of its electronic behavior and functional application by doping process. In this paper, we electrochemically synthesized polyaniline films under potential sweep conditions, which exhibit high electric conductivity about 200 S/cm. Specific energy of 600 Wh/kg and Ah efficiency 98% were achieved during the charge/discharge cycling using liquid electrolyte system. On the other hand, consequences of the cycling were 260 Wh/kg and 95% Ah efficiency using polyethylene oxide(PEO) based solid-state electrolyte system.

  • PDF