• 제목/요약/키워드: 리튬 도핑

검색결과 34건 처리시간 0.019초

리튬이온전지용 탄소기반 음극재의 리튬저장능력 향상을 위한 나노구조체 설계에 관한 연구

  • 김한빈;이명훈;김연원;김대영;강준
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.137-137
    • /
    • 2018
  • 이 연구에서는 리튬이온전지용 음극 활물질의 리튬이온 저장 용량을 최적화시키기 위한 새로운 방법이 제안되었다. 그 방법은 솔루션 플라즈마 프로세스를 사용하여 원자 단위의 리튬을 탄소 기반 물질의 내부에 도핑 시키고, 열처리를 통해 그 내부를 재설계하는 것이다. 리튬이온전지용 음극 활물질로 리튬금속 자체를 사용하려는 시도는 있었으나, 이는 충전 및 방전 사이클이 반복됨에 따라 리튬이 수지상으로 석출되어 내부를 단락시키거나, 리튬금속 자체의 폭발성에 의한 취급상의 제약이 있었다. 한편, 원자 단위로 탄소 내부에 도핑 된 리튬은 열처리 과정 동안 탄소 내부에서 확산함으로써 더 많은 리튬이 저장될 수 있는 공간을 만들었고, 사이클이 반복됨에 따라 서서히 충전 및 방전 반응에 참여함으로써 전지의 성능을 개선시켰다. 리튬이 도핑 된 탄소의 전기화학적 테스트 결과를 Fig. 1에 나타내었다. 실험 결과에서 보여진 초기 고용량 및 장기 사이클 특성은 탄소 내부에 도핑 된 리튬이 전지 성능의 향상에 중요한 역할을 한다는 것을 시사한다. 또한, 사이클이 반복됨에 따라 점차 증가하는 용량은 첫 사이클에서 형성된 solid electrolyte interphase의 비가역 용량을 보상할 수 있을 것으로 생각된다. 이상의 결과를 통해, 탄소 내부에 원자단위의 리튬을 도핑시키는 새로운 접근은 리튬이온전지의 성능 개선을 위한 효과적인 방법이 될 수 있을 것으로 보이며, 향후 리튬 이외의 다른 원소들, 즉 소듐과 같은 물질에 대하여 도핑을 시도한다면 새로운 분야에서 이와 같은 접근법이 유용하게 적용될 수 있을 것으로 사료된다.

  • PDF

도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상 (Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect)

  • 범지우;김은미;정상문
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.861-867
    • /
    • 2017
  • 니켈 함량이 높은 리튬이차전지용 NCA 양극소재의 용량 및 수명특성을 향상시키기 위하여 붕소와 코발트를 상업용 $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA)에 도핑하여 리튬이차전지의 양극소재로 사용하였다. 상업용 NCA 양극소재는 약 $5{\mu}m$$12{\mu}m$ 크기의 2차 입자들이 혼합되어 있고 붕소와 코발트 도핑후 입자크기는 조금 감소되었다. 붕소와 코발트를 도핑한 NCA-B와 NCA-Co의 초기 방전용량은 각각 214 mAh/g과 200 mAh/g으로 도핑하지 않은 NCA에 비해 높게 나타났으며, 특히 NCA-Co는 20번째의 방전용량이 157 mAh/g으로 가장 우수한 방전용량특성을 나타내었다. 이는 코발트를 도핑함으로써 c축 방향으로의 결정이 성장되어 리튬이온의 확산이 용이하기 때문이다.

Li1.6[MnM]1.6O4(M=Cu, Ni, Co, Fe)의 합성 및 리튬 흡착제용 신규 전구체로서의 물리화학적 성질 (Synthesis of Li1.6[MnM]1.6O4 (M=Cu, Ni, Co, Fe) and Their Physicochemical Properties as a New Precursor for Lithium Adsorbent)

  • 김양수;문원진;정순기;원대희;이상로;김병규;정강섭
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4660-4665
    • /
    • 2011
  • 리튬 흡착제용 신규 전구체인 $Li_{1.6}(MnM)_{1.6}O_4$ (M=Cu, Ni, Co, Fe)을 수열법에 의해 합성한 후에, 물리화학적인 성질을 고찰하였다. XRD와 HRTEM을 이용한 분석 결과로부터 Co를 도핑한 경우에는 본래의 스피넬 구조가 유지되는 반면에, Cu, Ni, Fe를 도핑한 경우에는 구조적인 변화가 발생하는 것을 확인하였다. Co 도핑에 의해 확인된 구조의 안정화는 산처리에 의해 리튬을 침출시킨 후에도 유지되었다. 해수에 함유된 리튬을 흡착하는 효율은 Co가 도핑된 망간 산화물 인 $Li_{1.6}[MnCo]_{1.6}O_4$가 상업적으로 적용 가능한 $Li_{1.33}Mn_{1.67}O_4$ 보다 우수한 특성을 나타내었다. 해수 1g으로부터 흡착되는 Li의 양은 $Li_{1.6}[MnCo]_{1.6}O_4$를 사용했을 경우에 35mg이었고, $Li_{1.33}Mn_{1.67}O_4$을 사용했을 경우에는 16mg 이었다.

Li 이차전지용 티타네이트 나노튜브 제조 및 특성평가 (Characterization and preparation titanate nanotubes for Li-ion secondary battery)

  • 오효진;이남희;윤초롱;정상철;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.510-510
    • /
    • 2007
  • Titanate nanotube(TNT)는 높은 비표면적과 우수한 물리화학적 특성을 가지고 있어 광촉매, 수소 저장재료, 태양전지용 전극재료 등에 적용되고 있다. 또한, 티타네이트 나노튜브는 전자 이동이 원활한 구조적 특징을 가지고 있어 리듐 이차전지용 호스트 재료로서 많은 연구가 진행 중이다. 이에 본 연구에서는 저온균일침전법으로 제조한 루틸상 $TiO_2$ 분말에 Lithium chloride를 1~10wt%를 동시에 첨가한 후 10M의 sodium hydroxide 수용액 내에서 수열합성하여 리튬이 도핑된 티타네이트 나노튜브를 제조하였다. 제조된 분말의 입자형상 및 크기는 전자주사 현미경을 이용하여 관찰하였으며, X-선 회절분석을 이용하여 리튬 첨가에 따른 결정상 변화를 관찰하였다. 또한 리튬이 도핑된 티타네이트 나노튜브의 전기화학적 특성 평가를 위해 양극 활물질 : 도전제 : 바인더를 75 : 20 : 5의 비율로 혼합한 후 coin cell을 제조하였고, potentiostat를 이용하여 용량 측정 및 cycle 특성을 실시하였다. 수열 합성법에 의해 형성된 입자는 직경 10nm, 길이 수 ${\mu}m$로 관찰되었으며, X-선 회절 시험 결과 LiO와 같은 이차상은 발견되지 않았다. 측정된 coin cell의 용량은 240mAh/g을 나타내었으나, 싸이클 특성이 빠르게 저하됨을 확인할 수 있었다.

  • PDF

고상법으로 제조한 $LiFePO_4$/C 양극의 전기화학적 특성

  • 안정훈;감대웅;황동현;손영국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.306-306
    • /
    • 2010
  • 일반적으로 가장 많이 사용되고 있는 양극재료 가운데 $LiCoO_2$는 비교적 용량이 크고, 우수한 수명특성의 장점을 가지고 있는 반면, 단점으로 원재료의 높은 가격과 독성이 있으며, 열적으로 불안정하다. 반면, 원재료의 높은 가격과 독성, 열적 불안정성은 단점으로 지적된다. 이러한 단점을 극복할 수 있는 양극재료로 원료 가격이 저렴하고 높은 용량(170 mAh/g)과 열적으로 안정한 올리빈 구조를 형성하고 있는 $LiFePO_4$가 가장 이상적으로 고려되어져 왔다. 하지만 낮은 이온, 전기전도도 때문에 다양한 연구가 이루어졌다. 특성향상을 위한 연구가 필요하며, 다양한 전이금속의 도핑과 카본 코팅을 통하여 전기전도도의 향상과 함께 구조적으로도 리튬 이온의 확산을 더 용이하게 한다는 결과가 최근 보고되어 있다. 최근 다양한 전이금속의 도핑과 카본코팅을 통하여 전기전도도의 향상과 함께 구조적으로도 리튬이온의 확산을 더 용이하게 한다는 결과가 보고되어 있다. 본 연구에서는 고상반응법을 이용하여 $LiFePO_4$를 합성하였고, 카본소스를 첨가하여 전기전도도의 향상과 함께 높은 용량의 $LiFePO_4$/C양극재료를 합성하였다. 제조된 분말은 XRD 회절시험을 통하여 결정구조를 분석 하였으며, SEM을 이용하여 분말의 형상과 크기를 관찰 하였고, 또한 전기화학적 특성도 평가하였다.

  • PDF

리튬이온 커패시터의 음극도핑 및 전기화학특성 연구 (Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor)

  • 최성욱;박동준;황갑진;유철휘
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.

신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체 (Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries)

  • 권오현;이지혜;김재광
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.93-99
    • /
    • 2021
  • 스트레처블 에너지 저장 장치 경량화를 위해 금속 집전체를 대체할 경량 물질 개발에 대한 관심이 높아지고 있다. 본 연구에서는 전도성 고분자인 PEDOT:PSS를 전기방사법으로 제조한 나노 섬유를 리튬이온전지용 집전체로 사용하였다. 나노 섬유는 도펀트인 DMSO를 사용해 향상된 전기 전도성을 나타냈으며, 신축성 평가결과로 부터 30% 이상의 신축률을 보여주었다. 또한, 나노 섬유 집전체를 사용함으로써 액체 전해질의 침투가 용이하며, 나노 섬유 네트워크를 통해 전자전도성을 높이는 효과를 나타났었다. DMSO 도핑 PEDOT:PSS@PAM 나노 섬유 필름 집전체를 사용한 리튬이온전지는 135mAh g-1의 높은 방전용량을 보여주었으며, 1000 사이클 이후 73.5%의 높은 용량 유지율을 나타내었다. 따라서, 전도성 나노 섬유의 우수한 전기화학적 안정성과 기계적 특성은 신축성 에너지 저장 장치의 경량 집전체로서의 활용이 가능함을 보여주었다.