• Title/Summary/Keyword: 리튬폴리머

Search Result 148, Processing Time 0.033 seconds

The State of Charge Estimation for Lithium-Polymer Battery using PI Observer (PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정)

  • Lee, Junwon;Shin, Gyubeom;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.58-59
    • /
    • 2014
  • 본 논문에서는 비례-적분(PI) 제어의 상태관측기를 구성하여 리튬폴리머 배터리의 충전량(SOC)을 추정하는 기법에 대해 설계한 뒤 실험을 통하여 검증하였다. 리튬폴리머 배터리는 1차 R-C 등가모델로 단순화하여 표현하였고, PI상태관측기를 Matlab/Simulink에서 설계하였다. 상온($25^{\circ}C$)에서 양방향 DC-DC 컨버터를 이용하여 리튬폴리머 배터리에 FTP-72 충 방전 사이클의 전류패턴을 인가한 뒤 SOC 추정기법을 검증하였다. PI상태관측기는 임의의 초기 SOC 상태에서도 오차율 2%이내로 SOC를 추정하여 모델링 에러나 외란에도 강인한 특성이 있는 것을 확인하였다.

  • PDF

Analysis and Verification of a LiPB Model for Temperature Variation (온도변화에 따른 리튬폴리머 배터리 모델 검증 및 분석)

  • Lee, Junwon;Park, Chihyoung;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.478-479
    • /
    • 2014
  • 본 논문에서는 온도변화에 따른 리튬폴리머 배터리 모델에 대해 검증 및 분석을 진행하였다. 리튬폴리머 배터리의 전기적 모델은 1차 R-C 등가회로를 기반으로 구성하였고, Matlab/Simulink를 이용하여 배터리 모델을 구현하였다. FTP-72 충 방전 사이클의 전류패턴을 이용하여 $0^{\circ}C$, $25^{\circ}C$, $40^{\circ}C$ 온도 변화에 따른 실제 리튬폴리머 배터리와 배터리 모델의 단자전압을 비교 분석하였다, 최대오차율은 $0^{\circ}C$에서 5.24%, $25^{\circ}C$에서 1.23%, $40^{\circ}C$에서 0.77%로 나타났으며, 이를 통해 여러 온도 환경에서도 제안한 배터리 모델이 높은 정확도를 갖는 것을 검증하였다.

  • PDF

Electrical Modeling of Lithium-Polymer Battery (리튬폴리머 전지의 전기적 모델링)

  • Im, Jae-Kwan;Lim, Deok-Young;Windarko, Novie Ayub;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • Electrical modeling of lithium-polymer battery is very important for electric energy supply system. In this paper, electric equivalent circuit of lithium-polymer battery is proposed to simulate its dynamic characteristics. Maccor 8500 charge/discharge system is used to obtain the experimental data of lithium-polymer battery. Model parameters are calculated by using Matlab. This paper defines a R-C model for charging/discharging of battery and polynomial functions are used for OCV (Open Circuit Voltage) modeling. The proposed model is simulated with PSiM and then compared the simulation results with the experimental results to verify the validity of the proposed model.

A Study on Electrical Modeling for Charge/Discharge Analysis of Li-Polymer Battery (리튬폴리머전지의 충/방전 특성해석을 위한 진기적모델링에 관한 연구)

  • 최해룡;반한식;목형수;신우석;고장면
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.435-442
    • /
    • 2000
  • Started upon Its discovery by Wright et al in 1773, studies on the solid polymer electrolyte are being carried out vigorously. So, models of Li-polymer battery have been developed through R-L-C components combination and PSpice functional block in this parer. The impedance characteristics of Li-polymer battery with R-L-C components are presented. Simulation results using PSpice functional model are compared with measured charge/discharge characteristics. Also, as to the number of cycle(charge/discharge), coulomb efficiency of Li-polymer is evaluated through experimental results.

  • PDF

Cycling Performances of Lithium-Ion Polymer Cells Assembled with Surface-Modified Separators Containing Aluminum Fluoride (불화 알루미늄을 포함하는 표면 개질된 분리막으로부터 제조되는 리튬이온폴리머전지의 싸이클 특성에 관한 연구)

  • Eo, Seung-Min;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • Rechargeable lithium-ion polymer batteries have been considered to be next-generation power sources for portable electronic devices and electric vehicles. In this work, we tried to improve the cycling performances of lithium-ion polymer cells by coating aluminum fluoride and acrylonitrile-methyl methacrylate copolymer to the polyethylene separator. It was found that the addition of aluminum fluoride to the surface-modified separator reduced the interfacial resistances and thus the cell exhibited a less capacity fading and better high rate performance. The cell showed an initial discharge capacity of 150 mAh/g and good capacity retention at 0.5 C rate.

Study on-Gas-generating Property Of Lithium Polymer Drone batteries (리튬 폴리머 드론 배터리 방전시 이상가스에 대한 연구)

  • Jong-Heon Lee;Jae-Won Kim;Hong-Joo Yoon;Won-Chan Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.195-204
    • /
    • 2023
  • The drone's battery system uses lithium-ion or lithium-polymer batteries, and it is known that the cause of fire during the disposal process after using the drone is combustible gas from the battery being discarded. Most of the batteries in the disposal process generated oxygen, but a small amount of flammable gas was also generated, and a large amount of chlorine ions and sulfates were also detected in the equipment used for treatment. If a system that detects this early is configured, it will be possible to reduce the risk of accidents caused by discarded batteries.

업체탐방 - LG엔시스

  • Son, Yeong-Seon
    • Electric Engineers Magazine
    • /
    • s.366
    • /
    • pp.54-55
    • /
    • 2013
  • IT인프라 전문기업인 LG엔시스는 중대형 리튬폴리머전지를 이용한 UPS용 토털 솔루션 'Sopra UPB'를 출시했다. 'Sopra UPB'는 LG화학의 리튬폴리머전지와 LG엔시스의 인프라관리 기술이 합쳐진 토털 UPS전지 솔루션으로 모든 IT인프라 제품과 서비스 환경에 대한 신속한 장애해결과 효율적인 운영관리를 통해 고객 정보화 경쟁력을 강화하는 것을 목표로 하고 있다.

  • PDF

Study on the Explosion and Fire Risks of Lithium Batteries Due to High Temperature and Short Circuit Current (고온 및 단락전류에 따른 리튬배터리의 폭발 및 화재 위험성에 관한 연구)

  • Sim, Sang-Bo;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.114-122
    • /
    • 2016
  • This study is to analyze the explosion and fire risks due to high temperature and short circuit current of Lithium batteries. This study selected the typical types of Li-polymer batteries and Li-ion batteries as the test samples. The result of explosion risk assessment due to the high temperature showed that, while a Li-polymer battery had $170^{\circ}C$ explosion on average, a Li-ion battery had $187^{\circ}C$ explosion. The measurement result of temperature increase due to short circuit current revealed that, in case that protection circuit module (PCM) was normally working, there was little of temperature increase due to over-current limitation. However, in case that PCM was out of order, the temperature of a Li-polymer battery increased up to an average of $115.7^{\circ}C$ and the temperature of a Li-ion battery increased up to an average of $80.5^{\circ}C$, which showed the higher risks of fire and burn.

A Nonlinear Observer Design for Estimating State-of-Charge of Lithium Polymer Battery (리튬폴리머 배터리 잔존충전용량 추정을 위한 비선형 관측기 설계)

  • Yoo, Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.300-304
    • /
    • 2012
  • This paper presents a nonlinear observer design method for SOC(state-of-charge) estimation of Lithium polymer battery cell. The dynamic equation of the battery cell is modeled as a simple RC electrical circuit with a nonlinear voltage source and the parameters are obtained via nonlinear optimization. Using the sum of squares decomposition, the observer gain is designed such that the error dynamics is asymptotically stable and the decay rate is below the prescribed value. In order to illustrate the performance of the observer, a computer simulation is performed using the experimental data with the UDDS(urban dynamometer driving schedule) current profile.