• Title/Summary/Keyword: 리튬이차전지

Search Result 402, Processing Time 0.031 seconds

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Battery Management System for High Capacity Ni MH Secondary Battery (대용량 니켈-수소전지용 배터리관리시스템)

  • Nam, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1509-1511
    • /
    • 2005
  • 군수용 이차전지는 납축전지, 니켈-카드뮴전지 등이 주로 응용되고 있다. 군수용 전지의 경우 민수용에 비해 사용온도범위가 넓고, 진동, 충격 등의 환경시험규격이 까다로우며, 높은 신뢰성이 보장되어야만 한다. 또한 최근 환경문제의 부각으로 니켈-카드뮴전지는 차츰 설자리를 잃어가고 있으며, 납축전지의 경우 오염물질의 배출뿐만 아니라 저온성능이 떨어지는 단점을 가지고 있다. 이의 일환으로 최근 선진외국에서는 이를 대체하기 위한 연료전지, 리튬-이온, 리튬-폴리머, 니켈-수소전지 등의 개발 및 적용이 확대되고 있는 실정이다. 하지만 연료전지의 경우 상용화가 아직 이루어지지 않고 있으며, 리튬계열 배터리의 경우 이상상태에서 폭발하는 특성을 갖고 있어 많은 문제점을 내포하고 있다. 본 논문에서는 군용 니켈-수소전지를 대상으로 특성을 알아보고 배터리의 합리적 운용을 돕기 위한 배터리관리시스템에 대해 살펴보고자 한다.

  • PDF

The Role of Microporous Separator in Lithium Ion Secondary Battery (리튬이온 이차전지에서의 미세다공성 격리막의 역할)

  • 이영무;오부근
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.123-130
    • /
    • 1997
  • The characteristics of microporous separator for lithium ion secondary battery was introduced. Microporous separator is a key component of a lithium ion secondary battery because its basic properties were related with the performance and safety of the battery. Up to now, stretched microporous polyolefins such as polyethylene(PE) separator were mainly applied. It is still required to enhance wettability and shut-down property. For this purpose, the application of fluorovinylic polymers and surface modification of conventional polyolefinic microporous membrans we being continuously tried.

  • PDF

Technology Trends in Post-Lithium Secondary Batteries (포스트 리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.

Enhanced Performance in a Lithium-ion Battery via the Crystal-aligned LiNi0.6Mn0.2Co0.2O2 and the Relevant Electrochemical Interpretation (결정배향 LiNi0.6Mn0.2Co0.2O2 전극활물질을 통한 리튬이차전지 성능 향상 및 이의 전기화학적 해석)

  • Cham, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.451-458
    • /
    • 2022
  • Through the crystal alignment research based on the magnetic properties of LiNixMnyCo1-(x+y)O2 such as magnetic susceptibility and related anisotropy, a crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode is obtained, in which the (00l) plane is frequently oriented perpendicular to the surface of a current collector. The crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode steadily exhibits low electrode polarization properties during the charge/discharge process in a lithium-ion battery, thus affording an improved capacity compared to a pristine LiNi0.6Mn0.2Co0.2O2 electrode. The aligned LiNi0.6Mn0.2Co0.2O2 electrode may have an appropriate structural nature for fast lithium-ion transport due to the oriented (00l) plane, and thus it contributes to enhancing the battery performance. This enhancement is analyzed in terms of various electrochemical theories and experiment results; thus, it is verified to occur because of the considerably fast lithium-ion transport in the aligned LiNi0.6Mn0.2Co0.2O2 electrode.

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).