• Title/Summary/Keyword: 리스크 평가

Search Result 380, Processing Time 0.024 seconds

Development of a Decision Making Model for Construction Management in LNG Plant Construction - Focused on Construction Stage - (LNG 공사의 건설사업관리 의사결정지원모델 개발 - 시공단계 중심 -)

  • Park, Hwan Pyo;Han, Jae Goo;Chin, Kyung Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.47-57
    • /
    • 2014
  • LNG plant projects tend to be implemented in overseas owing to its characteristics, so their project management scheme is somewhat different from those of general projects. Value chain in a LNG plant project includes exploration/production of gases, physical liquefaction/chemical conversion processes, transportation and storage. Key factors in the chain include liquefaction process (including ultra-low temperature liquefaction) to convert natural gas into liquid materials or fuel, and Front End Engineering Design (FEED) package, as well as Engineering, Procurement and Construction (EPC) technology comprising control, operation and construction. Success of a complex LNG plant project implemented in overseas depends on decision-making process in project management. Accordingly, to develop a decision-making model in of plant construction, the study extracted none factors in project management by EPC stage and assessed importance of each factor. The result showed that items in both project management and project risk management are important. Especially, the study developed a decision-making model in the construction stage of a LNG plant project based on the project management factors and importance assessment. The developed decision-making model would lay groundwork in building a decision-making system in construction stage of project management.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

Analysis of the Influence of Design Score and Price Score for Design Build Bidding (설계시공일괄입찰에서 설계점수와 가격점수의 영향력 분석)

  • Lee, Jinhak;Woo, Sungkwon;Lee, Siwook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.44-51
    • /
    • 2023
  • Selecting appropriate bidding system in construction projects considering the characteristic of project can be a make-or-break element, so the understanding for bidding system of public construction projects is ever more important from the perspective of both the owner and the contractor. The design-build bidding is commonly referred to as turnkey in Korea, and is a bidding method that is often applied to large public construction projects because it allows new technologies to be applied to the design and facilitates risk management for the owner. In this bidding method, there are only two factors (design score and price score) that affect the selection of the winning bidder, so it is important to understand the influence of each factor, but there is little research on the subject. This study aims to provide a basis for establishing bidding strategies for understanding the influence between design score and price score by analyzing various design-build bidding data of public construction projects. The results of the study show that design score is the factor that has more influence on the ranking of bidders in all three weighted evaluation methods: design-emphasized, price-emphasized, and equalized evaluation. In addition, we found that the correlation between design and price scores was not significant due to the unique bid evaluation structure in Korea.

A methodology for Predicting Equity Input Timing/Amount for Decision Making of Financing Apartment Housing Projects - From the Perspective of Mid-sized Construction Companies - (공동주택 PF사업 참여 의사결정을 위한 자기자본 투입 시점/규모 예측방법론 - 중견 건설사의 관점에서-)

  • Yoo, Jinhyuk;Cha, Heesung;Shin, Dongwoo;Kim, Kyungrai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2016
  • The current PF project is entirely relying on construction company's credibility. As such, it has increased a negative and bad recognition in domestic real estate economy. In addition, PF experts has a perception that a project's safety of future cash flow profitability is more important than the construction company's credibility. So many PF experts make an effort in order to set aside safe project structure of PF and analyse systematically the risks of the project. In common feasibility study of the PF Project, financial specialists and real estate specialists are forecasting and evaluating the suitability of the project through reviewing the development profit from the project of sales. However, cash flow analysis and evaluation from the perspective of mid-sized construction companies are still in the primary level. Therefore, this study has analysed the current feasibility study and go/no go decision making procedures. Then the authors have a new cash flow analysis method from the perspective of mid-sized construction companies, by improving the feasibility study and go/no go decision making procedures.

Value Management of Private Finance Initiative Projects (민간투자사업을 위한 VE 적용방안)

  • Lim, Jong-Kwon;Kim, Seoung-Il
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.123-130
    • /
    • 2006
  • Recently, Korean government promotes BTL(Build-Transfer-Lease) for their public construction project to apply private sector's experience and finance initiatives. Many of public buildings and civil infrastructure projects were planned to be delivered by BTL and it helps to continue public projects under tight budget conditions. Since the characteristics of BTL projects, creative ideas for the project function, performance and its LCC (Life Cycle Cost) become more important than usual public work project. This paper introduces the systematic "VE job Plan" application techniques for BTL project and shows the process. This study shows the application of "VE job Plan" for BTL project to help decision making and value improvement. Also, Project cost was estimated by LCC (Life Cycle Cost) analysis. Technical "FAST diagram"was developed and used to find major functions of the project. So, it helps to improve performance of functions and make creative ideas. FAST diagram also help to find relationships between functions and cost. A case study (Daegu Art Gallery BTL Project) was conducted using proposed "VE job Plan. Study demonstrates how value management helps save money and increase functional performance. Researcher found that project can save cost and improve performance of functions significantly by using appropriate VE analysis process at appropriate time.

  • PDF

A Research of Risk Assessment for Urethane Fire Based on Fire Toxicity (연소 독성 기반 우레탄 화재의 위험성 평가 연구)

  • Kim, Sung-Soo;Cho, Nam-Wook;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • Fire in the risk management subject belongs to high risk disaster which accompanies personnel and materiel loss. So, management of disaster and safety is required to include fire prevention activities, fire risk prediction and investment of safety management expense. Combustion toxicity is required by gas toxicity test (KS F 2271), to minimize human damage. In this study, gas toxicity test were experimented with regard to urethane sample (Depth 5~25 mm) to obtain basic data. Fire effluent exposing to experimental animal were analyzed by FT-IR (Fourier transform infrared spectroscopy). Combustion toxicity index Lethal Fractional Effective Dose ($L_{FED}$) of ISO 13344 was calculated. According to the result of calculating Lethal Concentration 50% ($LC_{50}$) based on $L_{FED}$, $LC_{50}$ of urethane sample containing certain level of fire load is confirmed as $118{\sim}129g/m^3$. Through this study, applicability of this method was confirmed for fire risk assessment. This method can provide information to predict human damage by toxicity combustion gas for securing safety.

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf (전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

A Propose on Seismic Performance Evaluation Model of Slope using Artificial Neural Network Technique (인공신경망 기법을 이용한 사면의 내진성능평가 모델 제안)

  • Kwag, Shinyoung;Hahm, Daegi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.93-101
    • /
    • 2019
  • The objective of this study is to develop a model which can predict the seismic performance of the slope relatively accurately and efficiently by using artificial neural network(ANN) technique. The quantification of such the seismic performance of the slope is not easy task due to the randomness and the uncertainty of the earthquake input and slope model. Under these circumstances, probabilistic seismic fragility analyses of slope have been carried out by several researchers, and a closed-form equation for slope seismic performance was proposed through a multiple linear regression analysis. However, a traditional statistical linear regression analysis has shown a limit that cannot accurately represent the nonlinearistic relationship between the slope of various conditions and seismic performance. In order to overcome these problems, in this study, we attempted to apply the ANN to generate prediction models of the seismic performance of the slope. The validity of the derived model was verified by comparing this with the conventional multi-linear and multi-nonlinear regression models. As a result, the models obtained through the ANN basically showed excellent performance in predicting the seismic performance of the slope, compared to the models obtained by the statistical regression analyses of the previous study.

A study on improvement of Trade Finance under international financial markets regulations (금융시장에 대한 국제적 규제 강화에 따른 무역금융제도의 개선방안)

  • Hong, Gil-Jong;La, Kong-Woo
    • International Commerce and Information Review
    • /
    • v.15 no.3
    • /
    • pp.289-310
    • /
    • 2013
  • In the past, an policy measures for the promotion of the export has actively used trade finance, but also in its effect there is no doubt. However, in 2008 the bankruptcy of Lehman Brothers triggered the global financial crisis. As a result, the need to effectively manage liquidity risk posed, and was a debut for Basel III. Focusing on trade finance banks are being made. Domestic commercial banks have not been able not utilize various trade finance techniques. In these situations, the introduction of Basel III can discourage trade finance. Therefore, responses should be prepared for it. Therefore, this study analyzes the status of trade finance system. And international regulation of the financial market are investigated for changes. Based on this, the development direction of Korea's trade finance is proposed.

  • PDF

Review of Real Options Analysis for Renewable Energy Projects (실물옵션 기법을 활용한 신재생에너지사업 경제성분석에 관한 연구)

  • Kim, Kyeongseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Due to climate change, countries around the world are actively investing in renewable energy, reducing fossil fuel use. 23.7% of world electricity is supplied by renewable energy. As the technology continues to develop, it is in a level to compete in terms of power generation cost, and investment conditions are improving. However, investment in renewable energy projects is not easy. This study analyzed trends of domestic and international researches on economics assessment applying real options analysis to investment decisions of hydro, solar, and wind power projects, which account for a large portion of renewable energy. This study provides (1) the difference between the traditional economic method and the real options analysis, (2) the application process, and (3) the uncertainty elements and option type of the renewable energy project presented by many studies. The real options analysis is suitable for the detailed investment strategy by considering the uncertainties of the renewable energy project and applying the option to improve the profit or to avoid the risk.