• Title/Summary/Keyword: 리사쥬 도형

Search Result 4, Processing Time 0.017 seconds

Discharge characteristics of Flat Fluorescent Lamp (FFL(Flat Fluorescent Lamp)의 방전 특정)

  • Kwon, Soon-Seok;Ryu, Jang-Ryeol
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • This experiment was analysed the discharge characteristics of FFL(flat fluorescent lamp). FFL is operated by sine and pulse wave source. We use FFL which has the electrodes covered with dielectric, observed the discharge characteristics of FFL by V-Q Lissajous' figure. When FFL is operated with pulsed, the discharge current flows after the applied voltage is risen. When the duty ratio increases, the number of metastable xenon atoms seem to increase. Consequently, the 172nm radiation becomes strong as the duty ratio increases.

A Study on Ultrasonic Technique for Measuring Gas Temperature (기체온도 측정을 위한 초음파 계측에 관한 연구)

  • Yoon, Cheon Han;Choi, Young;Jeon, Heung Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

Variation of Eddy Current Signal According to the Defect Shape, Defect Depth and Radial Load in CFRP Tube (CFRP 튜브의 결함형상.결함깊이.레이디얼 하중에 따른 와전류 신호의 변화)

  • 송삼홍;안형근;이정순;오동준;송일;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2004-2011
    • /
    • 2004
  • The applicability of the ultrasonic C-scan inspection is restricted due to the deterioration of mechanical properties of specimen during the test. Therefore, the aim of this research is applied to Eddy Current (EC) test substitute for the C-scan inspection in CFRP tube containing defects. This research is to evaluate the EC signals for the inspection of CFRP tube containing various circular hole defects (20% to 100% depth to the specimen thickness) using the unloading specimen and radial loading specimen. This study was considered the following points; 1) Analysis of EC signals for the inspection of saw-cut defect and circular hole defect, 2) The evaluation of defect depths and EC signals relationship. 3) Variation of EC signal owing to the radial load. In conclusions, the high frequency such as 300∼500 kHz made it possible to the inspection of 40% to 100% defects. Particularly, in case of 20% defect, the EC signal was not detected due to the noise of micro-crack and delamination. While the depth of the hole defects were decreasing, the difference of the phase angle between unloading specimen and radial loading specimen was gradually increasing.

A Study on Ozone Generation Characteristic Using Ba-Ti-Si Ceramic Tube (세라믹(Ba-Ti-Si) 방전관의 오존발생특성)

  • Lee, Tae-Gwan;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.543-548
    • /
    • 2006
  • This paper is to be researched into ozone generation character of Bi-Ti-Si type high dielectric ceramic catalyst discharge tube. And conditions of basic experiment are the outside diameter of discharge tube : 52 mm, the length of discharge tube : 350 mm, the frequence : 900 Hz, the temperature of cooling water : $25^{\circ}C$, quantity of flow : 5, 10, 20 L/min, pressure : 1.2, 1.4, 1.6 atm, and distance of discharge gap : 0.4, 0.6, 0.8 mm. Ozone generation characteristics were measured to consumption power. At quantity of flow : 20 L/min, discharge gap : 0.6 mm, pressure : 1.6, and consumption power : 150 W, Maximum ozone generation efficiency of 175 g/kWh was obtained. And a range of maximum ozone generation efficiency was measured below the flow quantity of 20 L/min at below pressure of 1.6 atm. However, Maximum ozone generation efficiency was measured over the flow quantity of 20 L/min at over pressure of 1.6 atm.