• Title/Summary/Keyword: 리브판

Search Result 56, Processing Time 0.03 seconds

Fatigue Capacity Evaluation of Hinge Type Connection System for a Hybrid Truss Bridge (복합 트러스교 힌지형 격점 구조의 피로 성능 평가)

  • Jung, Kwang-Hoe;Yi, Jong-Won;Lee, Sang-Hyu;Kim, Jay Jang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.303-310
    • /
    • 2011
  • To replace a steel box bridge for constructions of medium span bridges in Korea, the Hybrid Truss Bridge (HTB) is being considered as an alternative bridge type. The core technology of HTB is the connection joint that links the concrete slabs and steel truss pipes. Various construction companies in Japan have developed unique connection systems and applied to the real bridge constructions after verifying their performances through the experimental evaluation. In this study, the fatigue test of a hybrid truss girder has been performed in order to verify the newly proposed hinge type connection joint`s static and fatigue capacities. Through this fatigue test results, it is founded that the structural detail to improve the fatigue capacity should be developed. The hinge connection system with circular ribs has been proposed by means of structural finite element analyses. And then the fatigue test for this connection joint has been performed and it is proved that this connection joint has enough fatigue capacity. Finally, it is expected that the hinge connection system with circular ribs developed by in this study can be easily applied to the real bridge.

An Improved Multi-level Optimization Algorithm for Orthotropic Steel Deck Bridges (강바닥판교의 개선된 다단계 최적설계 알고리즘)

  • 조효남;이광민;최영민;김정호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.237-250
    • /
    • 2003
  • Since an orthotropic steel deck bridge has large number of design variables and shows complex structural behavior, it would be very difficult and impractical to directly use a Conventional Single Level (CSL) optimization algorithm for its optimum design. Thus, in this paper, an Improved Multi Level Design Synthesis (IMLDS) optimization algorithm is proposed to improve the computational efficiency. In the proposed IMLDS algorithm, a coordination method is introduced to divide the bridge into main girders and orthotropic steel deck with preserving the characteristics of the structural behavior. For an efficient optimization of the bridge, the IMLDS algorithm incorporates the various crucial approximation techniques such as constraints deletion, Automatic Differentiation (AD), stress reanalysis, and etc. In the case of orthotropic steel deck system, optimum design problems are characterized by mixed continuous discrete variables and discontinuous design space. Thus, a modified Genetic Algorithm (GA) is also applied to optimize discrete member design for orthotropic steel deck. From the numerical example, the efficiency and convergency of the IMLDS algorithm proposed in this paper is investigated. It may be positively stated that the IMLDS algorithm will lead to more effective and practical design compared with previous algorithms.

Evaluation of fracture toughness of dynamic interlaminar for CFRP laminate plates inserted interleaf (인터리브가 삽입된 CFRP 적층판의 인성평가)

  • 김지훈;강태식;한길영;김재열;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.91-96
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon filber rein-forcement plastics). Specimens used in this experiments are CF/PEEK laminated plates. In this experiments, Split Hopkin-sons Bar(SHPE) tes was apply to dynamic and notched flexure test. The model II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reac-tions at the supported points. As an experimental results the vibration amplitude of [$0^{\circ}_10 /F_4 0^{\circ}_10 $] j-aminates appear more than that of [$0^{\circ}_10 /F_2 0^{\circ}_10 $ laminates for the j-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen(CF/PEEK) with the crease of displacement velocity becomes great at a measuring point with in the range of measurement.

  • PDF

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

A Study for Stray Light Distribution of Mobile Phone Camera Consisting of Two Aspheric Lenses (2매 비구면 렌즈로 구성된 폰 카메라에서 미광 분포에 대한 연구)

  • Park, Kwang-Woo;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • A mobile phone camera consisting of two aspheric lenses is designed, and stray light distribution on the image plane is analyzed. We assume that most of the incident light is absorbed on the inner surfaces of the lens barrel and spacers, only a small fraction of the light is scattered uniformly. Assuming that 10% of the incident light is scattered on the barrel and spacers, the maximum value of stray light is 7.1% of the ideal image intensity. The result of analysis shows that stray light originated mostly from internal reflection on the ribs. The contributions of scattering by the barrel and spacers are relatively small. To reduce the internal reflection, thin absorbing plates are inserted between lenses, and the shapes of spacers are modified. After the redesigning of the lens barrel, the maximum value of stray light is reduced to 1.1% of the ideal image intensity.