• 제목/요약/키워드: 리뷰 스팸

검색결과 6건 처리시간 0.02초

크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가 (A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance)

  • 이성운;김성순;박동현;강재우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.338-343
    • /
    • 2016
  • 웹이 정보 교환의 주된 수단으로 사용되면서, 온라인 리뷰의 중요도가 증가하는 동시에 사용자의 올바른 의사결정을 저해하는 의견 스팸 이슈가 부각되고 있으며, 관련 연구가 활발하게 진행되고 있다. 하지만 분석 및 학습에 필요한 기준 데이터셋의 부족함과 한계점들은 관련 연구의 발전을 더디게 하고 있다. 본 논문에서는 사실 리뷰를 모사한 새로운 형태의 Paraphrased Opinion Spam(POS) 데이터셋을 소개한다. 우리는 실제 스패머들이 스팸을 작성할 때 실제 리뷰를 참고한다는 경향에 착안하여, 실제 리뷰어들이 작성한 리뷰를 의역하는 과정을 통하여 본문에 포함되어 있는 사실 정보와 경험을 담은 스팸 데이터 셋을 생성하였다. 실험 결과, 새롭게 생성된 POS 데이터셋이 언어학적으로 실제 리뷰들과 유사하여 스팸 분류 모델을 이용하여 분류 시 기존의 데이터셋들보다 더 분류하기 힘들다는 것을 발견했다. 또한 데이터의 학습량에 따라서 스팸 리뷰의 분류 정확도가 비례적으로 증가하는 것을 확인함으로써, 데이터의 양이 스팸 분류 모델 성능에 중요한 요소로 작용한다는 것을 확인할 수 있었다.

국내 쇼핑 사이트 적용을 위한 리뷰 스팸 탐지 방법의 성능 평가 (Performance Evaluation of Review Spam Detection for a Domestic Shopping Site Application)

  • 박지현;김종권
    • 정보과학회 논문지
    • /
    • 제44권4호
    • /
    • pp.339-343
    • /
    • 2017
  • 상품 또는 상점에 대해 거짓된 후기를 남기는 악의적인 사용자가 증가함에 따라 사용자에게 신뢰성 있는 정보를 제공하는 데 어려움을 겪고 있다. 거짓된 후기는 리뷰 스팸이라고 불리는데, 제품을 홍보하거나, 평판을 훼손하기 위해 작성된다. 이는 제품의 판매량에 직접 영향을 미치기 때문에 이러한 리뷰 스팸을 탐지할 필요가 있다. 국내 쇼핑 사이트에서도 리뷰 스팸은 흔히 접할 수 있으나, 기존 연구에서 제안된 방법은 모두 외국 사이트에서만 평가되었다. 따라서, 본 논문에서는 리뷰 스팸을 탐지하는 기존 방법의 소개와 더불어 네이버 쇼핑의 리뷰 특성을 파악하고, 리뷰 스팸을 탐지하는 여러 가지 방법을 네이버 쇼핑에 적용하여 성능을 평가하였다.

의미 프레임 자질 기반 의견 스팸 분석 (Deep Semantic Feature based Deceptive Opinion Spam Analysis)

  • 김성순;장혁윤;이성운;강재우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.1001-1004
    • /
    • 2015
  • 소설미디어의 급증과 함께 온라인 리뷰의 의존성이 급증하는 가운데 사용자의 올바른 의사결정을 저해하는 기만적 의견 스팸 이슈가 새롭게 주목받고 있다. 기존의 의견 스팸 연구는 실제 리뷰와 의견 스팸 간의 차이를 어휘, 품사 또는 감정단어와 같은 표면적 자질을 통해 설명하였으나 그들간의 의미적 연결관계는 고려하지 않았다. 본 논문에서는 1) 의미적 프레임 기반의 텍스트 분석기법을 제안하고, 이를 바탕으로 2) 의견 스팸과 실제 리뷰간의 의미적 차이가 있음을 규명하며 3) 새로운 의미적 프레임 자질을 사용하여 기존의 의견 스팸 분류 성능을 향상시킬 수 있음을 보인다.

제품 리뷰문에서의 광고성 문구 분류 연구 (Classification of Advertising Spam Reviews)

  • 박인숙;강한훈;유성준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.186-190
    • /
    • 2010
  • 본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.

  • PDF

전자 상거래 사이트의 가짜 리뷰 판별 기법 조사 (Survey on Fake Review Detection of E-commerce Sites)

  • 지쳉장;장진홍;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.79-81
    • /
    • 2014
  • 전자 상거래 리뷰 정보에 대한 소비자들의 의존도가 증가하고 있다. 제품 리뷰는 잠재적인 고객의 구매 결정에 있어 중요한 결정 요소이다. 제품 리뷰는 또한 상품 제조사들이 자신들의 제품에 대한 문제점을 발견하고 자신들의 경쟁자들에 대한 경쟁 정보를 수집할 수 있도록 해준다. 불행히도 많은 온라인 제품 정보들이 그 제품에 대한 진짜 고객들에 의해 만들어지지 않은 것이라는 것은 잘 알려진 사실이다. 리뷰를 쓰는 사람들은, 특정 제품의 평판을 떨어뜨리기 위해 가짜로 부정적인 리뷰를 쓰거나, 특정 제품에 대해 부당하게 긍정적인 리뷰를 써서 그 제품을 홍보하기도 한다. 이러한 리뷰들을 가짜 리뷰라고 한다. 가짜 리뷰 판별 기법은 가짜 리뷰를 판별하고 삭제하여 진실한 리뷰들만 독자에게 제공하기 위한 기법이다. 현재까지 이 문제에 대한 연구는 많이 발표되지 않았다. 본 논문에서, 우리는 관련 연구들을 조사하고 가짜 리뷰 판별 기법들에 대해 간단히 조망해 보고자 한다. 웹 스팸 및 이메일 스팸과 같은 가짜 리뷰 판별과 관련된 연구들을 소개한다. 그리고, 가짜 리뷰들을 판별하기 위한 방법들을 소개하고 요약한다. 마지막으로 가짜 리뷰 판별에 대한 연구 추세들로 결론을 맺는다.

  • PDF

온라인 제품 리뷰 스팸 판별을 위한 점증적 SVM (Incremental SVM for Online Product Review Spam Detection)

  • 지쳉장;장진홍;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.89-93
    • /
    • 2014
  • 제품 리뷰들은 잠재적인 고객의 구매 선택에 매우 중요하다. 제품 리뷰들은 또한 제조사들로 하여금 자신들의 제품의 문제점을 찾고 경쟁자들의 비즈니스 정보를 수집하는 데 사용된다. 그러나 어떤 사람들은 가짜 리뷰를 쓰고, 잠재적인 고객들과 제조사들로 하여금 잘못된 선택을 하게 만든다. 따라서 가짜 리뷰 판별은 전자 상거래 사이트에서 주된 문제들 중 하나이다. 서포트 벡터 머신즈(SVM)는 좋은 성능을 보이는 중요한 텍스트 분류 알고리즘이다. 본 논문에서는 온라인 리뷰 스팸을 판별하기 위해 가중치, Karush-Kuhn-Tucker(KKT) 조건의 확장, 그리고 컨벡스 헐(Convex Hull)에 근거한 점증적 알고리즘을 제시한다. 최종적으로 우리는 제시된 알고리즘의 성능을 이론적으로 분석한다.

  • PDF