• Title/Summary/Keyword: 리보일러

Search Result 4, Processing Time 0.018 seconds

Eddy Current and Ultrasonic IRIS Signal Characteristics of Reboiler Tube by Using STS 316L Calibration Specimen (STS 316L 교정시험편을 이용한 재가열기 튜브의 와전류신호와 초음파 IRIS 신호 특성)

  • Tak, Kyeong-Joo;Kim, Byung-Il;Gook, Jin-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • In this study, a field applicability of reboiler tube was evaluated by comparing ECT signal with IRIS signal about wall loss rate and remaining wall thickness using worked austenite STS 316L ASME standard calibration tube. In the case of wall-loss rate, as a result, tolerance about $20%{\times}4$ flat bottom hole and 10% O D groove(ECT), 80% defect and 10% O D groove(IRIS) occurred up to ${\pm}15%$. In the case of remaining wall thickness, ECT was satisfied with the both tolerance, but tolerance about 80% defect occurred up to ${\pm}15%$ in IRIS. Therefore, if the IRIS is performed for interpretation of non-relevant indication and measurement of wall-loss rate after ECT, reliability is supposed to be improved.

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression (기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구)

  • Jeong, Yeong Su;Jung, Jaeheum;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

Performance and Economic Analysis of 500 MWe Coal-Fired Power Plant with Post-Combustion $CO_{2}$ Capture Process (연소 후 $CO_{2}$ 포집공정이 적용된 500MWe 석탄화력발전소의 성능 및 경제성평가)

  • Lee, Ji-Hyun;Kim, Jun-Han;Lee, In-Young;Jang, Kyung-Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.244-249
    • /
    • 2011
  • In this study, performance and economic analysis of 500 MWe coal-fired power plant with $CO_{2}$ capture process was performed. For this purpose, chemical absorption method which is commercially available and most suitable for thermal power plant was studied and a criteria for technical and economic assessment of power plants suggested by IEA Greenhouse Gas R&D Programme was used. And we performed the sensitivity analysis focused on regeneration energy which exceed half of the total capture energy. Based on MEA(Monoethanoleamine) as a main chemical solvent and 3.31 GJ/ton$CO_{2}$ regeneration energy in the stripper, net power efficiency was reduced from 41.0% (no capture) to 31.6%(with capture) and the cost of $CO_{2}$ avoided was estimated 43.3 $/ton$CO_{2}$. And in case of 2.0 GJ/ton$CO_{2}$ regeneration energy, the cost of $CO_{2}$ avoided was calculated as 36.7 $/ton$CO_{2}$.