• Title/Summary/Keyword: 리니어 펄스모터

Search Result 39, Processing Time 0.024 seconds

The Characteristic Analysis for Thrust and Normal Force of Linear Pulse Motor (리니어 펄스 모터의 추력 및 수직력에 대한 특성 해석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.142-151
    • /
    • 1999
  • Linear Pulse Motors (LPM) are used a field where SImOth linear motion is required, and it's position accuracy higher than that of a lead According to the advanUlge such as simplicity of rrechanical frarre, high reliability, precise open-loop operation, low inertia etc. LPM is awlied largely where it have made motor of this kind more and rmre attractive in many application areas such as factory automation and high speed positioning. This paper is researched to analyze for force characteristics of hybrid LPM with high accuracy and repeatability. Both the thrust and normal force are very sensitive to the airgap and tooth pitches of the forcer and platen. Here, the thrust shows a high content while the normal force is much higher than the thrust. For magnetic circuits of hybrid LPM is the complicated structure, the finite element rrethod (FEM) is employed with suitable rrethod for calculating the force. Therefore, both the virtual work principle and maxwell stress tensor have been used.n used.

  • PDF

Linear Pulse Motor Characteristics Analysis using Non-linear Simulation (비선형 시뮬레이션에 의한 리니어 펄스모터의 특성해석)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.584-587
    • /
    • 1992
  • Because linear motor directly drives linear motion, it does not need conversion equipment such as belt and gear. Especially linear pulse motor provide more precise positioning and large force of linear pulse motors. As current manufacture technic of linear pulse motor is much to be desired at home. This motor lay out to make use of computer aided design program, In this paper the experimental motor is 2-phases 4-poles hybrid pulse motor which has teeth per pole Simulation program is divided its function into 4 parts - air gap permeance analysis, permanent magnet & non-linear core operating point determine, winding configuration, leakage flux analysis. It is possible to make motor static and magnetic characteristics for this simulation program. Also, by varying input parameters of the program, experimental motor is to be compared to motor characteristics.

  • PDF

Design and The Characteristic Analysis of the linear pulse motor for X-Y table (X-Y테이블 구동용 리니어 펄스모터의 설계와 특성해석)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.182-184
    • /
    • 2001
  • Linear pulse Motor(LPM) are used a field where smooth linear motion is required, and it's position accuracy higher than that of a lead. According to the advantage such as simplicity of mechanical frame, high reliability, precise open_loop operation, low inertia etc LPM is applied largely where it have made motor of this kind more and more attractive in many application areas such as factory automation and high speed positioning. This paper is researched to analyze for thrust force characteristic of hybrid LPM. Both the thrust and normal force are very sensitive to the airgap and tooth pitches of the force and platen. To find the optimal design parameter on the hybrid LPM for the embroidery machine. For the field analysis, the finite element method(FEM) is employed for calculating the force. The reluctance models will be used the magnetic permeance of airgap under static-conditions. The forces between forcer and platen have been calculated using the virtual work mathod.

  • PDF

Fuzzy Robust Control with Constant Thrust Force on Load Variation for Linear Pulse Motor (리니어 펄스모터의 부하변동에 따른 일정추력 퍼지 강인제어)

  • Bae Dong-Kwan;Kim Kwang-Heon;Park Hyun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.40-44
    • /
    • 2002
  • In this paper, robust control method using fuzzy PI parameter tuning is proposed to control constant thrust force on load variation. First, a structure and thrust force equations of the LPM are described. Second, an controller with PI parameter-tuning using a fuzzy theory is proposed to achieve high-precision position with constant thrust force of the LPM. Finally, the effectiveness of an fuzzy PI controller is demonstrated by some simulated and experimental results. Accurate tracking response and superior dynamic performance can be obtained due to the powerful on-line Fuzzy PI gain tuning method with regard parametric variations and load thrust force variations.

  • PDF

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.

Reducing the Thrust Ripple Generated by the Stacking of Stator Phase Windings of a Linear Pulse Motor (리니어 펄스모터의 고정자 상권선 적층에 따른 추력 리플 저감 기법 연구)

  • Choi, Jaehuyk;Zun, Chanyong;Mok, Hyungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.447-452
    • /
    • 2017
  • The stator phase winding of a linear pulse motor, which is a new type of linear motor, is comprised of two phases and is structurally characterized by a stacking method in which the winding of one phase is laid on top of the winding of another phase. Such a structural characteristic induces a difference in the flux linkage resulting from the flux of each stator phase winding in the same condition. The difference in the induced flux linkage acts as a kind of thrust ripple component in terms of the generated thrust. Thus, in order to maintain consistent thrust force, a method is required to solve the problem caused by the structural singularity. Hence, in this study, we present a technique for reducing the thrust force ripple generated by the stacking of the stator phase windings of a linear pulse motor through the generation of a compensating current reference value of the current controller in order to keep the torque constant. The proposed compensating algorithm is validated by simulations and experimental results.

A Study on the Position Detection Device for a Hybrid Type Linear Pulse Motor (HB형 LPM의 위치검출장치에 관한 기초연구)

  • 신춘식;김남호;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1996
  • In recent years, as the electonic industry has become more advanced, the LPM(Linear Pulse Motor) has appeared in a wide range of applications because of easier control, operation by open-loop control, high positioning accuracy, and retrieval of position or velocity data by the input pulses. In this study, we deal with the development of a position detection device attached to a hybrid LPM in our laboratory. Precise position detection signals could be sensed by the synchronous rectifier method from the LPM stator scale. In addition, we can keep the amplitude constant by using an AGC(Automatic Gain Control) circuit. Experimental results show that the position data is good enough to perform the LPM position control.

  • PDF

A Study on the Performance Characteristics of 2-Phase 8-Pole HB Type Linear Pulse Motor (2상 8극 HB형 리니어펄스모터의 구동특성에 관한 연구)

  • Kim, Il-Jung;Lee, Eun-Woong;Lee, Min-Myeong;Lee, Myeong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.615-619
    • /
    • 1992
  • This paper describes the specifications of proto type linear pulse motor (LPM), the systems of driver and measurement. Also the following characteristics of this LPM is experiments -. Static thrust characteristics -. Dynamic thrust characteristics -. Normal force (attraction force ) -. Acceleration & deceleration characteristics etc. This LPM is Hybrid(HB), Transverse field machine(TFM) type single-sided flat type, 2-phase, 8-pole

  • PDF

Effect of Airgap Length Difference on Characteristics of Double Side Linear Pulse Motor (공극 길이 차이가 양측식 리니어 펄스 모터의 특성에 미치는 영향)

  • Kim, Sung-Hun;Lee, Eun-Woong;Lee, Dong-Ju;Kim, Il-Jung;Kim, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.657-659
    • /
    • 2001
  • Prototype DSLPM (Double Side Linear Pulse Motor) has a complicated magnetic circuit to be composed of permanent magnetics and winding. During the fabricating of DSLPM, we found that upper airgap length may be a little different from lower airgap length because of fabrication tolerance and error. So, a little difference of both airgap length have a various effect on the characteristics of DSLPM. Therefore, in this paper, we analyzed the normal force and maximum static thrust force according to the difference of both airgap length on DSLPM with finite element method. Obtained results can be used for design of DSLPM with higher performance.

  • PDF

Precise Control of a Linear Pulse Motor Using Neural Network (신경회로망을 이용한 리니어 펄스 모터의 정밀 제어)

  • Kwon, Young-Kuk;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.987-994
    • /
    • 2000
  • A Linear Pulse Motor (LPM) is a direct drive motor that has good performance in terms of accuracy, velocity and acceleration compared to the conventional rotating system with toothed belts and ball screws. However, since an LPM needs supporting devices which maintain constant air-gap and has strong nonlinearity caused by leakage magnetic flux, friction and cogging, etc., there are many difficulties in improvement on accuracy with conventional control theory. Moreover, when designing the position controller of LPM, the modeling error and load variations has not been considered. In order to compensate these components, the neural network with conventional feedback controller is introduced. This neural network of feedback error learning type changes the current commands to improve position accuracy. As a result of experiments, we observes that more accurate position control is possible compared to conventional controller.

  • PDF