• Title/Summary/Keyword: 롤 안정성

Search Result 42, Processing Time 0.03 seconds

Improving the Roll Stability of a Vehicle by H$_{\infty}$ Control (선회 조향시 강건 제어에 의한 롤 안정성 개선)

  • 김효준;양현석;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.92-99
    • /
    • 2001
  • This paper presents a simulation study using a robust controller to improve the roll stability of a vehicle. The controller is designed in the framework of an output feedback H$_{\infty}$ control scheme based on the 3DOF linear vehicle model, solving the mixed-sensitivity problem to guarantee the robust stability and disturbance rejection with respect to parameter variations due to laden and running vehicle conditions. In order to investigate the feasibility of the active roll control system in a real car, its performance is evaluated by simulation in a 10DOF full vehicle model with actuator dynamics and tire characteristics.

  • PDF

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.

롤포밍을 위한 박판 미세구조물 기초 연구

  • 김형종;최두선;제태진;박재현;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-257
    • /
    • 2004
  • 자동차, 항공. 선박, 가전, 건축 및 방위 산업 등 현대 사회의 핵심 기간산업은 제품의 대부분을 금속 판재를 이용하여 제품을 생산한다 따라서 향상된 물성 특성을 갖춘 금속 판재를 이용함으로써 기존 제품의 성능을 더욱 향상시킬 수 있다 이러한 관점에서, 현대 사회는 에너지 자원이 점차 고갈되어 가고 있고 소비자의 기호 수준이 향상되어 고성능의 제품을 요구하고 있으므로, 높은 에너지 효율성과 구조의 안정성 및 신뢰성을 동시에 만족시킬 수 있는 초경량 고강도 재료 개발이 활발히 진행되고 있다.(중략)

  • PDF

Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution (차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.

A Study on the Application of the Steering Control to Increase Roll Stiffness for the Relatively Tall Vehicles (무게중심이 높은 차량의 롤 강성계수 증대를 위한 스티어링 제어기법의 응용에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • For the high center of gravity vehicles the roll stiffness of their suspensions is arranged to be very high because such vehicles are in some danger of tipping over in cornering. In some cases, the effective roll stiffness is determined significantly by the compliance of the tires because of the very stiff anti-roll members incorporated in the suspension. In such cases, it is clear that the shock absorbers which may be effective in damping heave oscillations have little effect on roll oscillations. Therefore, wind gusts and roadway unevenness may cause large swaying oscillations. In this paper, to improve the stability for the high center of gravity vehicles a control scheme to augment the damping of the roll mode is proposed. As the feedback signals needed to provide damping of the roll motion, the front or rear steer angles or both are chosen because they are very related to roll motion. The scheme is effective from moderate to high speeds and stabilizes the roll mode without introducing disturbance moments from roadway unevenness as shock absorbers do. The validity on the proposed method is verified through the computer simulation.

  • PDF

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.

3D 플라잉 디스크의 회전 운동에 따른 비정상 유동 해석

  • Park, Da-Un;Kim, Tae-Uk
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.4-8
    • /
    • 2016
  • 본 연구에서는 플라잉 디스크를 이용하여 회전 운동의 유무에 따른 공력특성의 변화를 비교 분석하였다. 회전 운동이 발생하면 표면에 비대칭적으로 압력이 분포하기 때문에 롤링 모멘트가 발생하고 마그너스 효과로 측력이 발생하고 피칭모멘트, 회전감쇠모멘트가 발생하고 롤 안정성이 증가한다.

  • PDF

Prediction of Rolling Moment for a Hand-Launched UAV Considering the Interference Effect of Propeller Wake (프로펠러 후류 간섭 효과를 고려한 투척식 무인기 롤 모멘트 예측)

  • Sang-Mann, Woo;Dong-Hyun, Kim;Ji-Min, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 2022
  • This paper explores three-dimensional unsteady computational fluid dynamic (CFD) analyses with an overset grid technique to analyse the wake effect created by a rotating propeller on a hand-launched unmanned aerial vehicle (UAV). Additionally, the influence of actual aileron deflection on the equilibrium condition of the rolling moment is examined in various hand-launched take-off conditions. The results of this study demonstrate the importance of initial aileron deflection in increasing the initial rolling stability during the hand-launched take-off process. Furthermore, an aerodynamic database is constructed to rapidly predict the aileron set values required for different take-off speeds and angle-of-attacks.

Analytical Investigation of the Influence of Rotor Flap Dynamics on Helicopter Flight Control System Feedback Gain Limit (헬리콥터 비행 제어시스템의 피드백 제어 이득 한계에 대한 로터 플랩 동역학의 영향성 분석)

  • Yang, Chang Deok;Lee, Seung Deok;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2020
  • The use of a high gain flight control system to achieve high bandwidth performance increase the instability of a helicopter. To investigate these phenomena numerically, high fidelity EC155B1 helicopter model and simplified flight control system that include actuator, digital processor and noise rejection filter was developed. A study conducts an analytical investigation of roll axis stability of the helicopter model as feedback gain increases. And this study analyzes roll-rate and roll-attitude feedback gains limited by rotor flap mode. The results indicate that the phase delays caused by the filter can severely limit the usable values of the roll-rate and roll-attitude feedback gains.