• Title/Summary/Keyword: 로터 블레이드 형상

Search Result 58, Processing Time 0.023 seconds

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Aerodynamic Optimization of Helicopter Blade Planform (II): Applications to Design Optimization (헬리콥터 블레이드 플랜폼 공력 최적설계(II): 최적설계 기법의 적용)

  • Kim, Chang-Joo;Park, Soo-Hyung;Shin, Ki-Cheol;Kim, Seung-Ho;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1060-1066
    • /
    • 2010
  • This paper focuses on the application of the proposed aerodynamic optimization techniques to design the blade planform of helicopter rotors. The design problems are formulated to maximize the hover figure of merit and the equivalent lift-to-drag ratio for high forward speed by optimally distributing airfoils, twist, and chord along the blade span. The numerical characters are investigated by solving various design problems. The advantages and limitations with the present design approach and the present modeling features for performance prediction are discussed. The recommendations for the required model refinements to get more accurate optimal configurations are addressed as future research areas.

An Experimental Study on Aerodynamic Performance of a Rotor-Blade Configuration under Cross-Wind Conditions (측풍 조건을 고려한 로터블레이드 형상의 공력성능에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • In the present study, a wind tunnel test for a rotor-blade configuration was conducted to investigate a basic aerodynamic performance and a effect of the cross wind. The diameter of the configuration was 1.46 m and the test was carried out for both a clean and a tripped configurations. The boundary layer for the trip configuration was simulated by zig-zag tape and the test performed on constant-velocity and constant-rotational modes. It was shown that the test result for the tripped configuration reduces the maximum power coefficient by 9.4% ~ 12.1% compared to the clean one. Within $5^{\circ}$ of the flow angle, there is no significant loss of power, however, the coefficient is reduced by 5.3% ~ 36.7% in the range of $10^{\circ}{\sim}30^{\circ}$.

Effect of Leading Edge Shape on the Blade Surface Temperature of a Partial Admission Supersonic Turbine (부분입사형 초음속 터빈의 블레이드 표면 온도에 블레이드 앞전 형상이 미치는 영향)

  • Lee, Sang-Do;Kim, Kui-Soon;Lee, In-Chul;Koo, Ja-Yae;Mun, In-Sang;Lee, Su-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper, numerical analysis of the surface gas temperature on turbine blades has been performed to investigate the temperature profiles characteristics of a partial admission supersonic turbine driven by high temperature and pressure gas of pyro-starter with two different types of turbine blade edge shape. In order to examine the surface gas temperature on turbine blades at initial starting, computations tlave been carried out at several turbine rotational speeds in the range of $0{\sim}10,000$ rpm for each type of turbine edge shape. "Sharp" edge and "Round" edge types were taken as the turbine edge shape factor. As turbine rotational speed increased, the average temperature of turbine blades was further decreased. It was also found that the surface temperature of turbine blades with a sharp edge was lower than round-type edge turbine blades.

The Optimum Design and Wake Analysis of Tidal Current Power Turbine (조류발전 터빈 최적화 설계 및 후류 영향 연구)

  • Jo, Chulhee;Kim, Doyoub;Lee, Kanghee;Rho, Yuho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.164.2-164.2
    • /
    • 2011
  • 지구온난화에 따른 대체에너지 자원확보가 국가적으로 중요한 과제로 대두되고 있고 여러 대체에너지원 중 국내의 해양에너지는 잠재량이 매우 높다. 여러 해양에너지 중에서 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경을 보존하면서 많은 에너지를 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 로터의 블레이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 설계되어야 한다. 또한 조류발전을 적용하는 해양환경에서 최대 출력을 생산할 수 있는 로터가 적용될 수 있도록 블레이드의 후류 영향을 고려해야한다. 본 논문에서는 날개요소이론을 바탕으로 수평축 조류발전 터빈을 설계하여 실험 및 유동해석을 통해 성능을 평가하고, 후류에 미치는 영향을 분석하였다.

  • PDF

Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition (운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석)

  • Ryu, Ki-Wahn;Seo, Yun-Ho
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.163-169
    • /
    • 2018
  • In this study, wind loads exerted on the offshore wind turbine rotor in parked condition were predicted with variations of wind speeds, yaw angles, azimuth angle, pitch angles, and power of the atmospheric boundary layer profile. The calculated wind loads using blade element theorem were compared with those of estimated aerodynamic loads for the simplified blade shape. Wind loads for an NREL's 5 MW scaled offshore wind turbine rotor were also compared with those of NREL's FAST results for more verification. All of the 6-component wind loads including forces and moments along the three axis were represented on a non-rotating coordinate system fixed at the apex of rotor hub. The calculated wind loads are applicable for the dynamic analysis of the wind turbine system, or obtaining the over-turning moment at the foundation of support structure for wind turbine system.

A Study on Experimental Test of a Small Scale Hingeless Rotor (축소형 무힌지 로터 시험에 관한 연구)

  • Kim, Joune-Ho;Song, Keun-Woong;Joo, Gene;Suk, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1599-1606
    • /
    • 2011
  • It is possible to study the load characteristics of full-scale hingeless rotor with the changing of physical smallscaled configurations such as rectangular and paddle blades, and metal and composite hubs. In this study, a static test, and a ground and wind-tunnel test were carried out using small-scale rotor models. The static test was carried out to confirm structural stiffness, characteristics of inertia, natural frequency, and damping ratio of rotors, and the ground and wind-tunnel test was carried out to confirm the stability and aerodynamic characteristics under hovering and forward flight conditions. According to the test results, the vertical load in the case of a combination of a small composite hub with paddle blades was higher than that in the case of a metal hub with paddle blades at same condition. Further, it was confirmed that the restraint of the combination of composite hub can be more flexible than the metal hub for the motion of paddle blades.

Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method (모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석)

  • Kim, Young-Hwa;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.