• Title/Summary/Keyword: 로터 블레이드

Search Result 273, Processing Time 0.025 seconds

Numerical Study on the Effect of Turbine Blade Shape on Performance Characteristics of a Dental Air Turbine Handpiece (터빈 블레이드 형상에 따른 의료용 에어터빈 핸드피스의 성능 특성에 관한 수치적 연구)

  • Lee, Jeong-Ho;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • High-speed air turbine handpieces have been used as a dental cutting tool in clinical dentistry for over 50 years, but little study has been reported on their performance analysis. Therefore, the effect of turbine blade shape on performance characteristics of dental air turbine handpiece were studied using CFD in this paper. Computations have been performed for five different positions of turbine blade by using frozen rotor method that is one of steady-state method. The characteristics of turbine blade for shapes and reflection angles were analyzed. As a result of the computation, torque is increased by increasing the reflection angle of turbine blade.

Strain Recovery Analysis of Non-uniform Composite Beam with Arbitrary Cross-section and Material Distribution Using VABS (VABS를 이용한 임의의 단면과 재료 분포를 가진 비균일 복합재료 보의 변형률 복원 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.204-211
    • /
    • 2015
  • This paper presents a theory related to a two-dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite wing structure with initial twist. Using VABS including a related theory, the design process of the composite rotor blade has been described. Cross-sectional analysis was performed at cutting point including all the details of geometry and material. Stiffness matrix and mass matrix were linked to each section to make 1D beam model. The 3D strain distributions within the structure were recovered based on the global behavior of the 1D beam analysis and visualize numerical results.

Individual Pitch Control of NREL 5MW Wind Turbine Blade for Load Reduction (NREL 5MW 풍력터빈의 블레이드 하중 저감을 위한 개별피치제어)

  • La, Yo-Han;Nam, Yoon-Su;Son, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1427-1432
    • /
    • 2012
  • As the size of a wind turbine increases, the rotor diameter increases. Rotor blades experience mechanical loads caused by the wind shear and the tower shadow effect. These mechanical loads reduce the life of the wind turbine. Therefore, with increasing size of the wind turbine, wind turbine control system design for the mitigation of mechanical loads is important. In this study, Individual Pitch Control in introduced for reducing the mechanical loads of rotor blades, and a simulation for IPC performance verification is discussed.

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

Installation Design of FLIR Sensor Considering Dynamic Characteristics of Helicopter Airframe (헬리콥터 동적 특성을 고려한 FLIR 센서 장착 설계)

  • Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Forcing at the rotor blade passing frequencies is responsible for the majority of vibration related problems on helicopters. Blade passing frequencies of helicopters are generally in the range 10~30 Hz and the interest modes of the helicopters also exist in the range. By the way, the installation of a heavy sensor at the front extremities of an imported helicopter may change the modal characteristics of the airframe and results in the resonance with rotor passing frequencies. To avoid too large a change in the dynamics of the overall airframe, we determined how to install a heavy sensor through conceptual approach and finite element analysis. The results of a ground vibration test for airframe with sensor mount system clearly demonstrate that the installation design is acceptable dynamically.

Vibratory Loads Behavior of a Rotor in High Advance Ratios (고속 전진비 조건에서의 로터 진동하중 특성 연구)

  • Na, Deok Hwan;You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.237-243
    • /
    • 2018
  • In this study, the hub vibration load characteristic is evaluated for a rotor in high advance ratio conditions while investigating blade loads through the structural load prediction and harmonic analysis. Numerical studies are performed to validate the wind tunnel test data performed in NASA as the rotor advance ratios are varied from 0.40 to 0.71. A good correlation is obtained for rotor performance calculation at the range of advance ratios considered. It is observed that the hub vibration loads remain almost unchanged when the advance ratios are higher than 0.5, even though the amplitudes of blade structural loads become larger with increasing advance ratios. A harmonic analysis on blade moments is confirmed that the dominant structural mode is 3/rev component for flap bending moments and 4/rev for lag bending moments. The reason is due to the tendency of the second flap and lag mode frequencies which approach 3/rev and 4/rev, respectively, as the advance ratios are increased.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

The Optimum Design and Wake Analysis of Tidal Current Power Turbine (조류발전 터빈 최적화 설계 및 후류 영향 연구)

  • Jo, Chulhee;Kim, Doyoub;Lee, Kanghee;Rho, Yuho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.164.2-164.2
    • /
    • 2011
  • 지구온난화에 따른 대체에너지 자원확보가 국가적으로 중요한 과제로 대두되고 있고 여러 대체에너지원 중 국내의 해양에너지는 잠재량이 매우 높다. 여러 해양에너지 중에서 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경을 보존하면서 많은 에너지를 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 로터의 블레이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 설계되어야 한다. 또한 조류발전을 적용하는 해양환경에서 최대 출력을 생산할 수 있는 로터가 적용될 수 있도록 블레이드의 후류 영향을 고려해야한다. 본 논문에서는 날개요소이론을 바탕으로 수평축 조류발전 터빈을 설계하여 실험 및 유동해석을 통해 성능을 평가하고, 후류에 미치는 영향을 분석하였다.

  • PDF

Horizontal-Axis Wind Turbine System Modeling using Multi-body Dynamics (다몸체 역학을 이용한 수평축 풍력발전 시스템 모델링)

  • 민병문;노태수;송승호;최석우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this paper, an efficient modeling method of Horizontal-Axis Wind Turbine(HAWT) system is proposed. This method Is based on representing a HAWT system as a multi-body system with several rigid bodies i.e. rotor blade, low/high speed shaft, gear system, md generator. Also, simulation software WINSIM is developed to evaluate performance of wind turbine system. Simulation results show that the proposed modeling method and simulation software are efficient and reliable.