• Title/Summary/Keyword: 로터리

Search Result 261, Processing Time 0.033 seconds

Development of Rotary Type Transplanting Device for Vegetable Transplanter (채소정식기용 로터리 식부장치 개발)

  • Park S. H.;Cho S. C.;Kim J. Y.;Choi D. K.;Kim C. K.;Kwak T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.135-140
    • /
    • 2005
  • Vegetable transplanting operation has been wholly depended on human labor that needs 18.4 hrs per 10 acres in Korea. Since periods of vegetable transplanting operations are limited, their mechanization has been strongly demanded. This study was conducted to develop a transplanting device that was the core technology for vegetable transplanter. In order to find out transplanting track and velocity of transplanting device, a kinematic analysis software was employed. Evaluation of prototype was carried out in the circular soil bin with high speed camera. Rotary type transplanting device produced an elliptic loci when two links of different lengths were moving to the opposite direction. The length of two links was 75mm and 44mm, respectively. Maximum displacement of rotary type transplanting device was 238mm. It seemed that the transplanting elliptic loci of transplanting device were identical between the simulation output generated by kinematic analysis software and the circular soil bin test result with a high speed camera. The rotary type transplanting device can be suitable fur transplanting short height vegetable, less than 20 cm length vegetables such as Chinese cabbage and cabbage, etc.

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

Finite Element Bending Analysis of Oval Tubes Using Rotary Draw Bender for Hydroforming Applications (로터리 드로우 벤더를 이용한 타원형 튜브의 유한요소 벤딩 해석)

  • Lee Ho-Kuk;Tyne Chester J. Van
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.71-74
    • /
    • 2005
  • In manufacturing automotive parts, such as engine cradles, frame rails, subframes, cross-members, and other parts from circular tubes, pre-bending and pre-forming operations are often required prior to the subsequent tubular hydroforming process. During some pre-forming operations, the cross section of a bent circular tube is crushed into an oval-like shape to ensure proper geometry and sufficient clearance in the hydroforming dies. For such applications, the use of oval Instead of circular tubes could be an effective means of eliminating the pre-forming step. The oval tube could also be produced with less thinning and with less strain on the outside of the bend when controlled by a booster system without the use of mandrel. Hence, the understanding of the issues that occur in the bending of oval tubes is worthy of Investigation. This paper presents parametric studies on the bending of oval tubes without a mandrel. The finite element modeling technique is used to examine the deformation characteristics for both circular and oval tubes. In the simulations, the bending process parameters of bend radius, aspect ratio of the tube ovalness, and tube wall thickness are varied. Observations are made to obtain a hoop-buckle limit diagram in terms of a non-dimensional shape degradation factor. Suggestions based upon developed criteria are made on the acceptability of bend tubes suitable for hydroforming applications without the need ofa pre-forming step or the used of a mandrel.

  • PDF

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA 를 이용한 쉘과 실린더의 최적 용접 조건)

  • Ahn, Byoung-Ha;Lee, Jang-Woo;Jeon, Simon;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.258-264
    • /
    • 2012
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represents characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

2단 GM형 맥동관 냉동기 적용 크라이오 펌프 개발

  • Go, Jun-Seok;Park, Seong-Je;Go, Deuk-Yong;Kim, Hyo-Bong;Hong, Yong-Ju;Yeom, Han-Gil;Gang, Min-Jeong;Gang, Sang-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.85-85
    • /
    • 2011
  • 반도체 생산 공정은 청정 환경을 요구하며, 이를 위해서는 고진공 환경이 필수적인 요소이다. 반도체 생산 라인의 고진공 환경 조성을 위해서는 주로 복합 분자 펌프와 크라이오 펌프가 사용되고 있다. 본 연구에서는 기존의 상용 크라이오 펌프에 사용되던 GM 극저온 냉동기를 맥동관 냉동기로 대체하기 위한 연구를 수행하였다. 맥동관 냉동기는 저온부에 움직이는 부분이 없어 진동이 작고, 신뢰성이 높은 장점이 있어 이를 이용한 크라이오 펌프는 반도체 생산 공정의 공정 정밀도 향상에 기여할 수 있을 것으로 기대된다. 맥동관 냉동기는 크라이오 펌프에 사용하기 위하여 2단으로 구성되며, 저온부가 U자 형상으로 개발되었다. 상용화를 고려하여 로터리 밸브와 위상조절기구가 위치하는 상온부는 일체형으로 제작하였다. 제작된 맥동관 냉동기의 기초 냉각 성능 시험 결과 부하가 없는 조건에서 최저도달온도는 1단과 2단에서 각각 42.53 K과 8.68 K 이었으며, 부하 시험 결과 1단과 2단에서 각각 40 W at 82.97 K, 10 W at 20.51 K의 냉각 능력을 갖는 것으로 측정되었다. 개발된 맥동관 냉동기에 복사차폐막 및 1차, 2차 냉각판을 설치하여 크라이오 펌프를 구성하였고, 기체 질소에 대한 배기 속도 측정 시험을 수행하였다. 배기속도 측정 결과 배기속도는 2차 냉각판의 형상에 크게 영향을 받는 것이 확인되었으며, 약 650 L/의 배기속도를 갖는 것으로 측정되었다. 실험 결과를 바탕으로 크라이오 펌프로 작동시 맥동관 냉동기의 동작 특성 및 배기 속도 향상을 위한 방안을 논의하였다.

  • PDF

Characteristics of Ride Vibrations in Rotary Tillage and Plowing Operations by Tractor (트랙터 로터리 작업과 쟁기 작업의 승차 진동 특성)

  • 박영준;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 2004
  • This study was intended to investigate the characteristics of ride vibrations transmitted to tractor operator during rotary tillage and plowing operations. Seat accelerations of a 41 ps diesel tractor in rotary tillage and plowing were measured and evaluated as specified in the ISO 2631-1. Effects of working speed and tilling depth on ride vibration were investigated. The level of ride vibration was also evaluated in terms of health guidance caution zones. Some of the results of the study are as follows: 1. The level of ride vibration in plowing was about 4.3 times greater than in rotary tillage. 2. The effect of working speed in rotary tillage differs depending upon the tillage depth. The level of ride vibration was increased with the speed, but it decreased over a certain tillage depth. Fore and aft vibration was 2.2-2.7 times severer than horizontal and vertical vibrations. Dominant frequency band was 1-3.15 ㎐ in fore and aft, 1-3.15㎐ and 16-25㎐ in horizontal, and 16-25㎐ in vertical directions. 3. Plowing reduced the ride vibration by 42.8-50.2%. But its positive effect decreased as the plowing speed increased. In plowing operation, ride vibration was similar degrees in fore and aft, horizontal and vertical directions. The dominant frequency band in plowing operation was 1-2.5㎐ in fore and aft, 1-2.5㎐ in horizontal, and 1-8㎐ in vertical directions. 4. On a basis of daily work hours of 4, total level of ride vibrations in plowing operation is likely to be harmful to operator's health.

Tractor Design for Rotary Tillage Considering Lift Resistance (상승저항력을 고려한 로터리경운작업을 위한 승용트랙터의 설계)

  • Sakai, J.;Yoon, Y.D.;Choe, J.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-350
    • /
    • 1993
  • The purpose of this study is to develop design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage. The main results of this study are as follows. 1. A wheel-lug ought to receive a special resistance in downward direction which resists the lug's upward motion on wet sticky soil surface. The authors introduce a new academic name of the "lift resistance(上昇抵抗力, 상승저항력)" for such a force which resists retraction of a wheel lug from the soil in the upward trochoidal motion. This force is composed of the frictional force acting on the trailing and the leading lug side, and the "perpendicular adhesion(鉛直付着力, 연직부착력)" acting on the lug face and the undertread face on adhesive soil. 2. The "lift resistance ratio(上昇抵抗力係數, 상승저항력계수)" and the "perpendicular adhesion ratio(鉛直付着力係數, 연직부착력계수)" were defined, which are something similar to the definition of the motion resistance ratio, the traction coefficient, etc. 3. The design equation of the optimum weight of a rotary tiller mounted on the tractor derived by calaulating the forces acting on the rotary blades. 4. The design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage were derived. It becomes clear that the optimum weight of a rotary tiller and a tractor can be estimated in planning design by means of putting about 21 design factors of the target into the equation. These equations are useful for planning design to estimate the optimum dimensions and specifications of a rotary tiller as well as a tractor by the use of known and/or unknown design parameters.

  • PDF

Study on the Development of High-speed Rotary Tilling System for Power Tiller (경운기의 고속 로터리 경운시스템 개발에 관한 연구)

  • 이승규;김성태;우종구;김재영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2001
  • The purpose of this study is to develop high-speed rotary tillage system for a power tiller by improving the rotary blade and the power train of transmission. Mechanical structure of gear train of rotary drive of conventional power tiller was simplified so that power can be transmitted directly from second shaft to tilling speed change shaft by rotating freely the transfer gear which changes the direction of rotation of shafts using needle bearing installed into middle shaft. A new gear train suitable for the single-edged rotary blade and high-speed rotary drive was developed with the rotational speed of rotary shaft faster than 7.5% at 1st-speed and 1.4% at 2nd-speed the one of conventional system by changing the numbers of teeth of gears of middle shaft, tilling speed change shaft and PTO shaft. Using the developed gear train for high-speed rotary drive, field tests were performed to compare tillage performances by the developed single-edged blade and by the conventional double-edged blade. The results showed that the performances by the single-edged blade compared with the one by the double-edged blade was improved about 18% in field capacity, about 34% in fuel consumption, and 9.4% in soil crushing ratio. Therefore, it may be concluded that tillage performance by the single-edged blade was improved compared to the one by the conventional blade. Evaluation of the developed system consisting of single-edged blade and gear train for high-speed rotary drive in field revealed that tillage performance of the developed system was similar to the one of field test conducted using the system consisting of single-edged blade and gear train for rotary drive of conventional power tiller However, considering the higher cone index of the upland field where evaluation was carried out compare to the one of the ordinary paddy field, it may be concluded that tillage performance of the developed rotary tilling system better than the one of conventional system.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF