• Title/Summary/Keyword: 로켓 발사

Search Result 330, Processing Time 0.032 seconds

Implementation of a Sequence Controller for a Rocket Fire Control System through Processor-Hot Backup System (프로세서 이중화를 통한 로켓 발사통제시스템 시퀀스 컨트롤러 구현)

  • 문경록;김재문
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2795-2798
    • /
    • 2003
  • 본 논문에서는 국내에서 개발하고 있는 과학로켓용 발사통제시스템(FCS, Fire Control System)의 시퀀스제어의 처리 영역을 PLC 시스템을 사용하여 구현하였다. 프로세서의 이중화를 통하여 Hot Backup 시스템을 구축하고 ControlNet 네트워크[l][2]를 기반으로 하는 프로세서와 I/O 간의 통신을 이용하였다. 먼저 로켓 발사통제시스템의 개요 및 주요 임무에 대하여 설명하고 기존에 사용된 발사통제시스템 구성을 분석하였다. PLC 시스템의 개요와 CPU 동작 내용 그리고 ControlNet 통신방식에 대하여 설명하고 프로세서를 이중화한 시스템을 제안하였다. 또한 이중화된 프로세서의 Switchover[2]방법을 알아보고 이러한 조건에 따른 PLC 시스템을 응용한 발사 통제시스템을 구성하여 이를 위해 작성된 시스템 운용 Ladder Diagram 프로그램에 대한 기술을 논하였다. 개발된 PLC 시스템의 구성을 제시하고 발사체 및 각종 지원시설과 연계한 시험을 통하여 성능을 검증하였다.

  • PDF

발사체 개발의 기술혁신 패턴과 전개방향

  • O, Jae-Geon
    • Defense and Technology
    • /
    • no.1 s.251
    • /
    • pp.44-53
    • /
    • 2000
  • 우리 나라의 로켓관련 기술은 '70년대 중반 방위 산업측면에서 군사용로켓개발과 함께 출발하였으며, 현시점에서 보면 약 30년 가까운 개발경험을 갖고 있다. 그러나 로켓관련 기술은 주로 시스템 중심의 설계기술 위주로 기술이 확보되었고 개발비용이 많이 드는 핵심소재 및 부품은 선진국에서 구입하여 사용하는 형태로 개발이 추진되었기 때문에 국내발사체개발을 위한 핵심기술의 확보가 부족한 실정에있다.

  • PDF

Development of KSR-III Fire Control System (KSR-III 발사통제시스템 개발)

  • Hong, Il-Hee;Seo, Jin-Ho;Shin, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2662-2664
    • /
    • 2002
  • 액체추진 과학로켓으로 개발되고 있는 KSR-III(Korea Sounding Rocket-III)의 발사통제시스템의 개발에 관하여 기술하였다. 발사통제시스템은 장기간에 걸쳐 개발된 로켓을 발사시키는데 필수적인 시스템으로서 신뢰성과 강인성이 최대한 요구된다. KSR-III 발사통제시스템의 하드웨어는 콘솔, PLC, 신호분배기, DAS로 구성되어 있으며 소프트웨어로서 HMI 및 DAS 제어프로그램이 있다.

  • PDF

A Numerical Study on the Supersonic Separation of Air-launching Rocket from the Mother Plane (초음속 공중발사 로켓의 모선분리 현상에 관한 수치적 연구)

  • Ji, Young-Moo;Kim, Young-Shin;Lee, Jae-Woo;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.18-25
    • /
    • 2005
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사로켓 최적설계)

  • Choi Young Chang;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.11-15
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better result than sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91 kg, total length of 6.18 m, outer diameter of 0.60 m and the payload mass of 7.5 kg has been successfully designed.

  • PDF

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

Weight Reduction of the Reusable Launch Vehicles Using RBCC Engines (RBCC엔진을 적용한 재사용발사체의 중량저감효과)

  • Kang, Sang Hun;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-66
    • /
    • 2013
  • Weight reduction of the VTHL / TSTO type of the reusable launch vehicles using RBCC engines are investigated. To predict weight and thrust of the vehicles, equations of motion are analyzed. Analysis results are compared with specifications of existing launch vehicles for validations. For the mission of inserting 2.5 ton payload to 200 km circular orbit, the case A, which uses the RBCC engine in the 1st stage shows smaller weight than the case B, which uses the RBCC engine in the 2nd stage. The weight of the case A shows only 25.8% of a existing rocket launch vehicle's weight.

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF

Development Status and Study of the Sounding Rocket (국내외 Sounding Rocket 개발현황 및 발전방향)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.466-475
    • /
    • 2011
  • This paper presents development status of sounding rockets containing scientific payload and telemetry at home and abroad. The case of outside, United States is launching sounding rockets in 20-30 flights per year by the NASA program which offers to carry payload weights of 38-680 kg and altitude of 88-1500 km. Europe is launching in 4-5 flights per year by the ESA program. The case of Korean sounding rockets was successful with the launch of three times(KSR-I,II,III), but Korea lags far behind the advanced countries in the field of development technologies for space launch vehicle. We expect that our scientific and industrial technologies will be improved through the research and development of sounding rockets. In this study we proposed necessity and future direction of development in domestic sounding rockets.

  • PDF

Development Status and Study of the Sounding Rocket (국내외 Sounding Rocket 개발현황 및 발전방향)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.70-79
    • /
    • 2011
  • This paper presents development status of sounding rockets containing scientific payload and telemetry at home and abroad. The case of outside, United States is launching sounding rockets in 20-30 flights per year by the NASA program which offers to carry payload weights of 38-680 kg and altitude of 88-1500 km. Europe is launching in 4-5 flights per year by the ESA program. The case of Korean sounding rockets was successful with the launch of three times(KSR-I,II,III), but Korea lags far behind the advanced countries in the field of development technologies for space launch vehicle. We expect that our scientific and industrial technologies will be improved through the research and development of sounding rockets. In this study we proposed necessity and future direction of development in domestic sounding rockets.