• Title/Summary/Keyword: 로켓 노즐

Search Result 263, Processing Time 0.02 seconds

A Numerical Study of Unsteady Plows in A Rocket Main Nozzle (로켓 주노즐내 비정상 유동의 수치해석적 연구)

  • Kim S. D.;Kim Y. I.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-59
    • /
    • 2000
  • A numerical study of axisymmetric rocket main nozzle flow has been accomplished. The CSCM upwind flux difference splitting method with an iterative time marching scheme having second order accuracy in time and space has been used to simulate unsteady flow characteristics in an axisymmetric rocket main nozzle. Though the pressure vary at nozzle inlet with the lapse of time, Mach No. and the density were not changed significontly compared with the temperature. Specific heat ratio $\gamma$=1.134 predicted higher temperature at nozzle throat and exit and nondimensional thrust coefficients at exit than specific heat ratio $\gamma$=1.4 did.

  • PDF

A Study on the Thermal Shock Characteristics of the Rocket Nozzle Material (로켓 노즐 재료의 열충격특성에 관한 연구)

  • Lee, Jang-Won;Lee, Young-Shin;Kim, Jae-Hoon;Kim, Seung-Joong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.562-566
    • /
    • 2004
  • Thermal shock is a physical phenomenon that occurs in the condition of the exposure of a rapidly large temperature and pressure change of in the quenching condition of material. The rocket nozzle is exposed to high temperature combustion gas, it may have failure and erosion deformation. So, it is important to select a suitable material having excellent thermal shock properties and evaluate these materials in rocket design. In this study, the temperature gradient and crack initiation of rocket nozzle material is investigated using by FEM under thermal shock condition. This is very important information in the design process of thermal structure.

  • PDF

A Case Study on Upper Stage Liquid Propellant Rocket Engine Developments (위성 발사체 상단 엔진 개발 사례 연구)

  • Nam, Chang-Ho;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.109-115
    • /
    • 2011
  • Development cases of space launch vehicle upper stage engine were studied. HM-7, Vinci, LE-5, RL10 engines are representative upper stage engines of Europe, Japan, and United States. It was realized that upper stage engines were developed with more than two engine test facilities and the development period was 5 to 8 years accompanied with 10~11 engines.

  • PDF

Analysis of Performance of Turbine Exhaust Nozzle for Liquid Rocket Engine (액체로켓엔진의 터빈 배기노즐 성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.316-319
    • /
    • 2008
  • A computational analysis has been conducted on the compressible flow in the turbine exhaust nozzle of the gas generator cycle liquid rocket engine. The commercial CFD code Fluent has been used. Four nozzle designs have been compared to select the turbine exhaust nozzle concept. Three candidates with single nozzle have comparable performance. The model with bifurcated nozzles shows significant performance loss. However it will be better in the view of balanced thrust distribution because of its symmetric geometry.

  • PDF

Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor (고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화)

  • Kim, Dohun;Shin, Bongki;Son, Min;Koo, Jaye;Kang, Moonjung;Chang, Hongbeen
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

The Variation of Thrust Distribution of the Rocket Nozzle Exit Plane with the Various Position of Secondary Injection (2차 분사의 위치 변화에 따른 로켓노즐 출구에서의 추력 분포 변화)

  • Kim, Sung-Joon;Lee, Jin-Young;Park, Myung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.45-53
    • /
    • 2000
  • A numerical study is done on the thrust vector control using gaseous secondary injection in the rocket nozzle. A commercial code, PHOENICS, is used to simulate the rocket nozzle flow. A $45^{\circ}-15^{\circ}$ conical nozzle is adopted to do numerical experiments. The flow in a rocket nozzle is assumed a steady, compressible, viscous flow. The exhaust gas of the rocket motor is used as an injectant to control the thrust vector of rocket at the constant rate of secondary injection flow. The injection location which is on the wall of rocket is chosen as a primary numerical variable. Computational results say that if the injection position is too close to nozzle throat, the reflected shock occurs. On the other hand, the more mass flow rate of injection is needed to get enough side thrust when the injection position is moved too far from the throat.

  • PDF

Numerical Investigation of the Effect of Nozzle-Rotor Axial Clearance on the Supersonic Turbine Performance (노즐-로터 간극이 초음속 터빈의 성능에 미치는 영향에 대한 수치해석 연구)

  • Park Pyun-Goo;Jeong Eun-Hwan;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.331-336
    • /
    • 2006
  • This paper studies the effects of the nozzle-rotor axial clearance of a supersonic turbine on turbine performance. The nozzle-rotor axial clearance of the supersonic turbine developed to drive a turbopump for 30 ton class liquid rocket engines was varied and a numerical analysis of the turbines having the different nozzle-rotor axial clearances was conducted. It has been found that turbine performance degrades with an increasing axial clearance due to the increased stagnation pressure loss in the axial clearance region.

  • PDF

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

A Study on Ablation Behavior of Graphite Nozzle using Liquid Rocket Engine (액체로켓엔진을 이용한 Graphite 노즐의 삭마 거동 연구)

  • Cho Nam Choon;Park Hee Ho;Keum Young Tag
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.119-122
    • /
    • 2005
  • Ablation phenomena is very complicated because it includes momentum, energy and mass transfer, chemical reactions as well as phase change. In this paper, ablation at the rocket nozzle throat is modeled as unsteady one dimensional axi-symmetric with proper boundary conditions and field equation is solved numerically. Analytical results are compared with measured ablation data from firing experimental liquid rocket engine. Test variables are combustion pressure and mixture ratio. for low combustion pressure and low mixture ratio, the discrepancy between analysis and experiments are large but for the normal rocket operation range, two results show a simliar trend with maximum discrepancy of $100\%$.

  • PDF

Development of Bulging Process for Regenerative Cooling Nozzle of Liquid Rocket Thrust Chamber (액체로켓 연소기 재생냉각형 노즐의 벌징 공정 개발)

  • Ryu, Chul-Sung;Choi, Hwan-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • A study has been conducted on the bulging process of regenerative cooling nozzle which is essential for the manufacturing of liquid rocket thrust chamber. Tension tests have been performed for the material to be used for the development of the bulging process and mechanical properties are obtained by the test. Two or three bulging tools were required to complete the bulging process. The necking of the material was a major failure encountered in the bulging process and a research has revealed that grain size of the material has considerable effect on its occurrence. The presently developed bulging process with a controlled grain size material has been successfully applied to the manufacturing of subscale and 30-tonf full scale regeneratively cooled nozzle while demonstrating the applicability and usefulness of the presently developed bulging process.

  • PDF