• Title/Summary/Keyword: 로켓추진시스템

Search Result 313, Processing Time 0.022 seconds

Flow Rate Control Prediction Modeling for Large Liquid Rocket System During Engine Start Up (대형 로켓엔진시스템의 시동 시 유량제어 예측 모델링)

  • Jeong, Yu-Shin;Kim, Sang-Hoon;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.8-13
    • /
    • 2011
  • 본 연구에서는 대형 로켓엔진시스템의 시동 시 안정적인 유량공급을 위한 제어기 설계가 이루어졌다. 펌프, 오리피스, 제어밸브, 파이프, 인젝터 및 재생 냉각채널과 같은 엔진시스템 구성품들에 대한 동특성 모델링을 수행하였고 유량공급 제어가 가능한 밸브의 구동신호를 조절 가능한 PID 제어기를 설계하였다. 시동 시 안정적인 유량공급을 위하여 실험을 통해 얻은 밸브의 적정 개도율을 적용시켰으며, 이를 기준으로 하여 제어밸브의 작동신호를 조절하여 유량비를 제어하였다. 시뮬레이션 한 결과 제어기를 통해 시동 시 정상추력까지 유량공급을 제어 하는 방법이 적절함을 확인하였다.

  • PDF

Determination of Liquid Rocket Engine System Test Range Considering Performance Dispersions (성능 분산을 고려한 액체로켓엔진의 시스템 시험 영역 설정)

  • Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.165-169
    • /
    • 2007
  • Qualification test range for Lox/Kerosene gas generator cyle liquid rocket engine was determined by considering engine dispersion and flight inlet conditions. With various pump characteristics, the operation range of components and system was investigated through dispersion analysis. The variation of engine performance shows opposite trends in calibration and dispersion.

  • PDF

Water Rockets for Engineering Education of Launch Vehicles, Part I: Principles and System Composition (발사체 공학교육을 위한 물로켓, Part I: 원리와 시스템 구성)

  • Kim, Jae-Yeul;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.525-534
    • /
    • 2019
  • Water rocket is a pressurized liquid propellant rocket that shares the same basic principles of space launch vehicles. Water rockets can be used as an engineering educational material for the liquid rocket principles and the launch vehicle systems, far beyond the scope of K-12 level science education. In this paper, the principles and theories of water rocket propulsion and flight dynamics was investigated at the level of undergraduate rocket engineering classes. Also, the system level design and operation of water rocket is summarized by including the components of launch vehicle, launch pad, payload and recovery as well as altitude measurement methods.

Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Turbopump (액체추진제 로켓엔진 터보펌프 저주파 동특성)

  • Ha Seong-Up;Jung Young-Seok;Han SangYeop;Oh Seung-Hyub;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.26-35
    • /
    • 2004
  • As part of thrust control technology research on turbopump-fed type liquid-propellant rocket engine system, the low frequency dynamic characteristics of turbopump was investigated. It can be described that a turbopump system has a 1st-order lag element. When the value, which was resulted by subtraction of the variation of turbine moment with respect to the variation of revolution number from the variation of pump moment with respect to the variation of revolution number, was positive, the time constant of the 1st-order lag element was positive which stood for a stable system. Increasing the above-mentioned valve within positive range leaded to the increase of response and to the decrease of controllability.

Experimental Study on Nozzle Ablation in Liquid Rocket Engine (액체로켓의 노즐 삭마에 대한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Kim, S.K.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2000
  • In general liquid rocket nozzles are protected from hot combustion gas by regenerative cooling techniques. But due to the complexity of the cooling system, it causes increase of system cost and frequently source of the system malfunction. Recently, instead of regenerative cooing, ablative material are used to protect combustion chamber wall and nozzle. To determine the nozzle material erosion rate and erosion shape, more than 500 hot fire test were performed by using 100 lb thrust experimental liquid rocket. Test variable were propellant feed sequence, injector, position of igniter and liquid oxygen supply temperature.

  • PDF

A Study on International Case and Application for Propulsion System Test Complex (추진기관 시스템 시험설비 개발을 위한 해외사례 분석 및 적용방안)

  • Park, Ju-Hyun;Park, Soon-Sang;Han, Yeoung-Min;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.96-99
    • /
    • 2012
  • The test facility for confirming performance of a propulsion system is essential infra-structure to develop launch vehicle system. Using the PSTC, cold flow and combustion tests are performed to the propulsion system of individual stage in launcher. Moreover the ground test for the total launching process is conducted. In order to construct the PSTC, we not only have surveyed technology of internal and external countries, but also actively use the case in terms of the system. The test facility consists of feeding system, test stand, control and measurement, and flame deflector.

  • PDF

Development of Thrust Measurement System and Study of Calibration in Liquid Rocket Engine (액체 로켓 엔진에서의 추력 측정 장치 개발과 calibration에 관한 연구)

  • Park, Soo-Hwan;Park, Hee-Ho;Kim, Yoo;Cho, Nam-Choon;Keum, Young-Tag
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • It is very difficult to measure an exact thrust in liquid rocket engine compared to solid rocket motor, however it is very important to estimate a performance of engine for developing rockets. To get a good result, we have to concern about errors of measurement and find a method of calibration. In this research, we developed new thrust measurement system for liquid rocket engine.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling. (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (I))

  • Park, Kye-Seung;Kim, Yoo;Kim, Tae-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • This paper describes a general design procedure of regenerative cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that soot from combustion products have strong influence on the cooling characteristics of LRE.

PID Control Characteristic of Thrust Control Valve for Liquid-Propellant Rocket Engine (액체로켓엔진 추력제어벨브 PID 제어특성 분석)

  • Kim Hui-Tae;Lee Joong-Youp;Han Sang-Yeop;Kim Young-Mog;Oh Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.96-103
    • /
    • 2005
  • The main purpose of launch vehicle is to insert satellite into a target orbit safely and correctly. To accomplish the main purpose of launch vehicle, the inserting velocity, inserting angle, and final mass of launch vehicle should be within the allowable range. In general, such requirements are satisfied with applying TCS(Thrust Control System) and TDS(Tank Depletion System), which manage thrust and mixture ratio by controlling propellant flow rate with thrust and mixture ratio control valves. In this study, the control characteristics of thrust and mixture ratio control valve were examined by PID control logic for stable operation of liquid-Propellant rocket engine at on-dosing point. The analysis on the control characteristics of control valves was done with AMESim code and the results from control valve test facility at KARI.