• Title/Summary/Keyword: 로켓추진시스템

Search Result 313, Processing Time 0.021 seconds

공중발사형 3단 로켓 개발에 관한 연구

  • 이재우;황진용;변영환;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.12-12
    • /
    • 2000
  • 우리 나라는 일본상공의 비행을 피하기 위하여 제주도와 남해안 근해로 발사장 선정이 국한되는 지정학적인 위치로 볼 때 발사장 선택에 제한이 없는 공중발사에 대한 가능성 연구가 필요한 시점에 있다. 본 연구는 우리 나라와 같은 분단 된 특수상황 그리고 지정학적 위치에서의 발사장을 고려한 우주 발사체 개발의 필요성에 따라 F-4에 장착 가능한 3단형 공중발사 로켓을 설계하고 1/3의 축소 모형을 제작하였다. 2kg의 payload를 갖는 발사체의 1단은 LRM ( Lox/kerosene )을 사용하였고 2, 3단은 SRM ( HTPB/AP/Al )을 사용하였으며 발사고도는 11-l2km 상공에서 F-4에 의해서 발사되고 31km지점에서 1단 분리가 이루어지며 62km지점에서 2단 분리와 nose fairing을 분리하게 된다. 전장은 6.85m 이며 전체 무게는 560.6kg 이고 전체 발사체 시스템의 CAD 도면은 아래 그림 1과 같이 주어져 있다. 그림 2에서는 F-4E phantom의 장착성을 검토해 본 결과 장착이 가능함을 알 수 있었으며 추진제 양의 감소로 크기를 대폭 줄일 수 있었다.

  • PDF

An Experimental Study of the Rocket Preburner Injector (로켓 프리버너 분사기의 성능특성 연구)

  • Yang, Joon-Ho;So, Youn-Seok;Choi, Hyun-Kyung;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.47-53
    • /
    • 2006
  • The oxidizer-rich preburner is applied to the high efficiency closed cycle rocket propulsion system. This system is generally operated on oxidizer-fuel mixture ratio over than 50. The spray quality and mixing performance are very important for safe combustion of this preburner. This paper presents basic concept and spray characteristic of the preburner injector.

  • PDF

Strain Characteristics of a 75 tonf-class Engine for Ground Firing Test (75톤급 엔진 지상 연소 시험 변형율 특성)

  • Yoo, Jaehan;Kim, Jinhyuk;Jeon, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.126-133
    • /
    • 2018
  • A liquid rocket engine experiences various static loads in flight, such as high pressures due to propellents, thrust and thermal loads due to cryogenic liquid oxygen and combustion gas with extreme vibration. During the engine development stage, structural analyses and investigation on the strain measured from ground firing tests are necessary for determining the structural reliability of the engine. In this study, the strain characteristics, obtained from the ground firing tests of a 75 tonf-class engine, were analyzed.

Development Status of a Turbopump for 30-ton Thrust Level of Engine (30톤급 액체로켓엔진용 터보펌프 개발현황)

  • Kim Jin-Han;Hong Soon-Sam;Jeong Eun-Hwan;Choi Chang-Ho;Jeon Seong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.375-383
    • /
    • 2005
  • The present paper describes the first development of a LOX/kerosene type turbopump in Korea. The liquid rocket engine, that the turbopump can be applied to, has a 30-ton(metric) level of vacuum thrust and employs a gas generator cycle. The turbopump consists of two single-stage centrifugal pumps, that is, LOX and kerosene pumps, and one single-stage impulse turbine. Inter-propellant seal(IPS) is located between the LOX pump and the kerosene pump to avoid any interaction between the propellants. A series of component and TPU(Turbopump Unit) test has been completed in the level of simulant propellants and ready for hot firing tests.

  • PDF

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (II))

  • Kim, Jung-Hun;Jeong, Hea-Seung;Park, Hee-Ho;Park, Kye-Seung;Kim, Yoo;Moon, Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • This paper describes the general design procedure of cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, the proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that combustion pressure and mixture ratio have an influence on the heat flux to be produced in combustion chamber.

  • PDF

Development of System Analysis Program of Liquid Rocket Engine II (액체로켓엔진 시스템 통합 해석 프로그램 개발 2)

  • Lee, Sangbok;Son, Min;Seo, Jongcheol;Lim, Taekyu;Roh, Tae-Seong;Koo, Jaye;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.16-25
    • /
    • 2014
  • The system analysis and design program of the liquid rocket engine has been developed for preliminary conceptual design process. The program consists of modular programs analyzing the main thruster, the gas-generator, turbo-pumps, the turbine, pipes, valves and so on. Each module has been developed in order to estimate performance, weight, and shape parameters of the components. The results of them have been verified with experimental data or other programs.

Optimal Output Tracking Control Simulation for Thrust Control of an Open-cycle Liquid Propellant Rocket Engine (개방형 액체로켓엔진의 추력제어를 위한 최적출력 추종제어 시뮬레이션)

  • Cha, Jihyoung;Cho, Woosung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.52-60
    • /
    • 2020
  • This paper deals with an optimal output tracking control for open-cycle liquid propellant rocket engine. For this purpose, we modeled simplified mathematical model of open-cycle liquid propellant rocket engine and designed optimal output feedback control system using combustion chamber pressure. For design the closed-loop system of open-cycle liquid propellant rocket engine, we designed optimal output feedback linear quadratic tracking control system using the linearized model and demonstrated the performance of the controller through numerical simulation.

System Analysis of the Liquid Rocket Engine with Staged Combustion Cycle (단계식 연소 사이클 액체로켓엔진의 시스템 해석)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Yoo, Seung-Young;Oh, Seok-Hwan;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.46-51
    • /
    • 2012
  • This study aims to develop the performance analysis program on the staged combustion cycle of the liquid rocket engine using liquid oxygen(LOx) as oxidizer, liquid hydrogen(LH2) and RP-1 as fuel. The developed analysis program can obtain the propellant mass flow rate, the specific impulse, and representative design values of engine components for the required thrust satisfying pressure, mass flow, and energy balance conditions. The analysis results show that the the specific impulses (Isp) compared to those of the real engines have been less than 1%. With additional constraints, the program will be improved for the system optimization.

  • PDF

Optimum Configuration for Pressurization System of Propellant Tank (추진제 탱크 가압 시스템의 최적 구성)

  • Jung, Young-Suk;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • Propulsion system of launch vehicle is composed with subsystems as propellant tank, pressurization system, propellant fill/drain system, valve operating system, purge system and so on. Among others, pressurization system is the most important subsystem, because of the real-time control part for pressure control of propellant tank. Therefore, it is the subsystem that must be primarily considered on conceptual design process. In this paper, the data of the previously developed pressurization systems were collected and the optimum configuration was selected by analysis of advantage and disadvantage of the systems.

The Study on the Development of Thrust Measurement System and Reliability Appraisal Technique for Low-Thrust Liquid Rocket Engine (저추력 액체로켓엔진의 추력 측정 장치 개발 및 신뢰도 평가 기법에 관한 연구)

  • Lee, Dong-Hyeong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin;Moon, Il-Yoon;Lee, Hyung-Sool
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.9-19
    • /
    • 2009
  • Accurate thrust measurement is very important when developing an engine of propulsion system. Especially for a low thrust liquid rocket engine(LRE), accuracy of thrust is seriously affected by thrust measurement errors and thurst losses which are caused by propellant supply system. In this study, a new thrust measurement system is developed for accurate thrust measurement of a low thurst LRE by minimizing these effects. Its thrust measurement range is 150~1500N and the maximum error is below 10N. Also, a reliability appraisal technique is investigated to improve reliability and accuracy of the thrust measurement system.