Recently, many studies have been conducted on substituting fossil fuels with bio-refineries in existing industrial systems using biomass. Among the various bio-refineries, microalgae have received wide attention because it uses inorganic compounds to produce useful substances, which are extracted by a cell disruption process. Although numerous cell disruption methods exist, cell disruption efficiency has been studied by ultrasonic treatment. Ultrasound is a high-frequency (20 kHz or higher) sound wave and causes cell disruption by cavitation when passing through a solvent. In this study, we used the microalgal species Chlorella sp., which was cultured in a plate-type photobioreactor. The experiment was conducted using a continuous low-frequency processing device. The reduction of cells with time due to cell disruption was fitted using a logistic model, and optimum conditions for highly efficient cell disruption were determined by conducting experiments under multiple conditions.
Purpose: This study aimed to investigate the influence of social capital on the depression of older adults living in rural areas. Methods: Data sets were obtained from the 2019 Korea Community Health Survey. The participants were 39,390 older adults over 65 years old living in rural areas. Indicators of social capital included trust, reciprocity, network, and social participation. Depression-the dependent variable-was measured using the Patient Health Questionnaire-9 (PHQ-9). Hierarchical ordinal logistic regression was conducted to identify factors associated with depression after adjusting the data numbers to 102,601 by applying the Synthetic Minority Oversampling Technique (SMOTE). Results: The independent variables-indicators of social capital-exhibited significant association with the depression of older adults. The odds ratios of depression were higher in groups without social capital variables. Conclusion: To reduce depression, we recommend increasing social capital. Factors identified in this study need to be considered in older adult depression intervention programs and policies.
BLE 비콘을 이용한 실내측위 시스템의 성능 개선을 위해 BLE5.1에서 지원하는 방향탐지 기술 중 도래각을 측정하는 수신기를 제작하고 머신러닝으로 분석하여 최적의 위치를 측정하였다. 머신러닝 모델의 생성과 테스트를 위해 k-최근접 이웃 분류 및 회귀, 로지스틱 회귀, 서포트 벡터머신, 결정트리 인공신경망 및 심층신경망 등을 이용하여 학습하고 시험하였다. 결과로서, 연구에서 제작한 테스트 세트 4를 이용하는 경우 최대 99%의 정확도를 보였다.
IoT환경에서 스마트 디바이스로부터 사람의 신체 활동을 인식하여 생활 패턴 데이터를 수집할 수 있게 되었다. 본 논문에서는 제안된 모델은 예측단계와 추천단계로 구성한다. 예측 단계는 생활 패턴 데이터로부터 수집된 데이터셋을 기계학습을 통해 로지스틱 회귀와 k-최근접 이웃 알고리즘을 활용하여 불안과 우울의 척도를 예측한다. 추천 단계는 불안과 우울 증상으로 분류된 경우 이를 호전시킬 수 있는 음식과 가벼운 운동을 추천하기 위해 주성분 분석 알고리즘을 적용한다. 제안한 불안·우울 예측과 음식·운동 추천은 개인의 삶의 품질 개선에 파급효과가 있을 것으로 기대한다.
The dropout of university freshmen is a very important issue in the financial problems of universities. Moreover, the dropout rate is one of the important indicators among the external evaluation items of universities. Therefore, universities need to predict dropout students in advance and apply various dropout prevention programs targeting them. This paper proposes a method to predict such dropout students in advance. This paper is about a method for predicting dropout students. It proposes a method to select dropouts by applying logistic regression using a shift sigmoid classification function using only quantitative data from the first semester of the first year, which most universities have. It is based on logistic regression and can select the number of prediction subjects and prediction accuracy by using the shift sigmoid function as an classification function. As a result of the experiment, when the proposed algorithm was applied, the number of predicted dropout subjects varied from 100% to 20% compared to the actual number of dropout subjects, and it was found to have a prediction accuracy of 75% to 98%.
국내 NPL (Non performing loan) 시장은 1998년에 형성되었지만, 본격적으로 활성화 된 시기는 2009년으로 역사가 짧은 시장이다. 이로 인해 NPL 시장에 대한 연구도 아직까지는 활발히 진행되지 않고 있는 상황이다. 본 연구는 NPL 시장의 각 물건 별 기준 수익률 달성 유무를 예측할 수 있는 모델을 제안한다. 모델 구축에 사용되는 종속변수는 물건 별 최종 수익률이 기준 수익률 수치 도달 여부를 나타내는 이항변수를 사용하였고, 독립변수로는 물건의 특성을 나타내는 11개의 변수를 대상으로 one to one t-test와 logistic regression stepwise, decision tree를 수행하여 의미있는 7개의 독립변수를 선별하였다. 그리고 통상적으로 사용되는 기준 수익률 수치(12%)가 의미있는 기준 수치인지 확인하기 위해 수치 값을 조절해가며 종속변수를 산출하여 예측모델을 구축해보았다. 그 결과 12%의 기준 수익률 수치로 산출한 종속변수를 이용하여 구축한 예측모델의 평균 Hit ratio가 64.60%로 가장 우수하다는 결과를 얻었다. 다음으로 선별된 7개의 독립변수들과 12%를 기준으로한 수익률 달성유무 종속변수를 이용하여 판별분석, 로지스틱 회귀분석, 의사결정나무, 인공신경망, 유전자알고리즘 선형 모델의 5가지 방법론을 적용해 예측모델을 구축해보았다. 5가지 방법론으로 도출한 예측 모델 간 Hit ratio를 비교한 결과 인공신경망을 이용하여 구축한 예측모델의 Hit ratio가 67.4%로 가장 우수한 결과를 도출해내었다. 본 연구를 통해 추후 NPL시장 신규 물건 매매에 있어서 7가지의 독립변수들과 인공신경망 예측 모델을 활용하는 것이 효과적임을 증명하였다. 물건의 12% 수익률 달성 여부를 사전에 예측해봄으로써 유동화회사가 투자 의사결정을 하는 데에 도움을 줄 것으로 예상하며, 나아가 NPL 시장의 거래가 적정한 가격 선에서 진행됨으로 인해 유동성이 더욱 높아질 것이라 기대한다.
연구자가 공간자료를 이용하기 위해서는 자료 포맷 분석, 리포맷팅, 지도투영 변환 등의 반복된 작업이 필요하다. 연구자는 이러한 문제를 해결하기 위해 개발자와 함께 웹 기반의 시뮬레이션 시스템을 구축하고 있다. 하지만, 공간자료를 이용하는 웹 기반의 시스템에 적절한 시뮬레이션 프레임워크가 없어 효율적인 개발에 어려움이 있다. 본 연구에서는 웹 기반 시스템에 효율적으로 적용할 수 있는 지리 공간 시뮬레이션 프레임워크를 설계하고 제안하였다. 프레임워크의 모듈은 웹 매핑 서비스, Geographic Information System(GIS) 매핑, 통계, 모델, 프로세싱, 그래픽, 공간 데이터세트 등 7개의 모듈로 구성되었다. 프레임워크의 효율성 평가를 위해 도시 성장을 사례로 검증하였으며, 공간정보분야에 전문지식이 없는 비전문가라도 공간자료를 활용한 웹 기반의 시스템 구축이 쉬울 것으로 생각한다.
신경망은 데이터로부터 반복적인 학습 과정을 통해 숨어 있는 패턴을 찾아내고, 새로운 데이터의 목표값에 대한 정확한 예측에 유용한 모델링 기법이다. 본 논문은 개인적인 특성, 가정 사회적 환경, 타 교과 성적을 이용하여 학생의 컴퓨터 활용 능력 예측을 위한 다층 인식모형(MLP) 신경망을 구축하였다. 신경망의 인식률은 예측 방법으로 널리 활용되고 있는 로지스틱 회귀분석 모델과 비교하였다. 개발한 신경망에 대한 실험 결과, 개인적인 특성이 학생들의 컴퓨터 활용 능력을 가장 잘 설명하는 요소이며, 반면 가정 사회적 환경은 가장 낮은 예측 요소임을 발견하였다. 또한 본 연구의 신경망 모델은 회귀분석보다 더욱 높은 인식률을 나타냈다.
산란계사와 같이 매우 좁은 환경에서 많은 개체를 사육하는 경우 작은 환경 변화에도 큰 피해를 받을 수 있다. 이와 같은 문제를 해결하기 위해 본 연구에서는 끊임없이 소리를 발생하는 산란계의 특성을 이용하여 산란계 발성음 분석 시스템을 제안한다. 기존의 산란계 발성음 시스템은 산란계사의 제한된 상황만을 고려하거나 실제 산란계사에 적용하기에는 어려움을 가지고 있다. 이러한 문제를 극복하기 위하여 본 논문에서는 MFCC 특징 벡터를 이용한 9가지의 산란계 소리 분석을 통해 실제 산란계사 환경에서 발생하는 수 있는 7가지의 상황을 실시간으로 감지할 수 있는 새로운 산란계 발성음 분석 모델을 제안한다. 본 논문에서 제안한 분석 모델을 실제 산란계사에서 성능 평가를 진행한 결과, 평균 AUC 0.93의 분류 성능을 나타내어 기존의 주파수 기반의 특징 분석 방법에 비해 약 43% 향상된 결과를 보여주었다.
이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.