• 제목/요약/키워드: 로지스틱 모델

검색결과 247건 처리시간 0.029초

연속저주파를 이용한 미세조류 파쇄 (Analysis of Cell Disruption in Microalgae Using Continuous Low Frequency Non-Focused Ultrasound)

  • 최준혁;김광호;박종락;정상화
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.33-41
    • /
    • 2021
  • Recently, many studies have been conducted on substituting fossil fuels with bio-refineries in existing industrial systems using biomass. Among the various bio-refineries, microalgae have received wide attention because it uses inorganic compounds to produce useful substances, which are extracted by a cell disruption process. Although numerous cell disruption methods exist, cell disruption efficiency has been studied by ultrasonic treatment. Ultrasound is a high-frequency (20 kHz or higher) sound wave and causes cell disruption by cavitation when passing through a solvent. In this study, we used the microalgal species Chlorella sp., which was cultured in a plate-type photobioreactor. The experiment was conducted using a continuous low-frequency processing device. The reduction of cells with time due to cell disruption was fitted using a logistic model, and optimum conditions for highly efficient cell disruption were determined by conducting experiments under multiple conditions.

사회자본이 농촌 거주 노인의 우울 상태에 미치는 영향: 2019년도 지역사회건강조사를 이용한 단면연구 (Influence of Social Capital on Depression of Older Adults Living in Rural Area: A Cross-Sectional Study Using the 2019 Korea Community Health Survey)

  • 정민호;김진현
    • 대한간호학회지
    • /
    • 제52권2호
    • /
    • pp.144-156
    • /
    • 2022
  • Purpose: This study aimed to investigate the influence of social capital on the depression of older adults living in rural areas. Methods: Data sets were obtained from the 2019 Korea Community Health Survey. The participants were 39,390 older adults over 65 years old living in rural areas. Indicators of social capital included trust, reciprocity, network, and social participation. Depression-the dependent variable-was measured using the Patient Health Questionnaire-9 (PHQ-9). Hierarchical ordinal logistic regression was conducted to identify factors associated with depression after adjusting the data numbers to 102,601 by applying the Synthetic Minority Oversampling Technique (SMOTE). Results: The independent variables-indicators of social capital-exhibited significant association with the depression of older adults. The odds ratios of depression were higher in groups without social capital variables. Conclusion: To reduce depression, we recommend increasing social capital. Factors identified in this study need to be considered in older adult depression intervention programs and policies.

머신러닝 기반 BLE 실내측위 성능 개선 (Machine Learning Based BLE Indoor Positioning Performance Improvement)

  • 문준;박상현;황재정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.467-468
    • /
    • 2021
  • BLE 비콘을 이용한 실내측위 시스템의 성능 개선을 위해 BLE5.1에서 지원하는 방향탐지 기술 중 도래각을 측정하는 수신기를 제작하고 머신러닝으로 분석하여 최적의 위치를 측정하였다. 머신러닝 모델의 생성과 테스트를 위해 k-최근접 이웃 분류 및 회귀, 로지스틱 회귀, 서포트 벡터머신, 결정트리 인공신경망 및 심층신경망 등을 이용하여 학습하고 시험하였다. 결과로서, 연구에서 제작한 테스트 세트 4를 이용하는 경우 최대 99%의 정확도를 보였다.

  • PDF

불안과 우울 예측을 위한 기계학습 알고리즘 (Machine Learning Algorithms for Predicting Anxiety and Depression)

  • 강윤정;이민혜;박혁규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.207-209
    • /
    • 2022
  • IoT환경에서 스마트 디바이스로부터 사람의 신체 활동을 인식하여 생활 패턴 데이터를 수집할 수 있게 되었다. 본 논문에서는 제안된 모델은 예측단계와 추천단계로 구성한다. 예측 단계는 생활 패턴 데이터로부터 수집된 데이터셋을 기계학습을 통해 로지스틱 회귀와 k-최근접 이웃 알고리즘을 활용하여 불안과 우울의 척도를 예측한다. 추천 단계는 불안과 우울 증상으로 분류된 경우 이를 호전시킬 수 있는 음식과 가벼운 운동을 추천하기 위해 주성분 분석 알고리즘을 적용한다. 제안한 불안·우울 예측과 음식·운동 추천은 개인의 삶의 품질 개선에 파급효과가 있을 것으로 기대한다.

  • PDF

시프트 시그모이드 분류함수를 가진 로지스틱 회귀를 이용한 신입생 중도탈락 예측모델 연구 (A Study of Freshman Dropout Prediction Model Using Logistic Regression with Shift-Sigmoid Classification Function)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.137-146
    • /
    • 2023
  • The dropout of university freshmen is a very important issue in the financial problems of universities. Moreover, the dropout rate is one of the important indicators among the external evaluation items of universities. Therefore, universities need to predict dropout students in advance and apply various dropout prevention programs targeting them. This paper proposes a method to predict such dropout students in advance. This paper is about a method for predicting dropout students. It proposes a method to select dropouts by applying logistic regression using a shift sigmoid classification function using only quantitative data from the first semester of the first year, which most universities have. It is based on logistic regression and can select the number of prediction subjects and prediction accuracy by using the shift sigmoid function as an classification function. As a result of the experiment, when the proposed algorithm was applied, the number of predicted dropout subjects varied from 100% to 20% compared to the actual number of dropout subjects, and it was found to have a prediction accuracy of 75% to 98%.

한국 NPL시장 수익률 예측에 관한 연구 (A study on the prediction of korean NPL market return)

  • 이현수;정승환;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.123-139
    • /
    • 2019
  • 국내 NPL (Non performing loan) 시장은 1998년에 형성되었지만, 본격적으로 활성화 된 시기는 2009년으로 역사가 짧은 시장이다. 이로 인해 NPL 시장에 대한 연구도 아직까지는 활발히 진행되지 않고 있는 상황이다. 본 연구는 NPL 시장의 각 물건 별 기준 수익률 달성 유무를 예측할 수 있는 모델을 제안한다. 모델 구축에 사용되는 종속변수는 물건 별 최종 수익률이 기준 수익률 수치 도달 여부를 나타내는 이항변수를 사용하였고, 독립변수로는 물건의 특성을 나타내는 11개의 변수를 대상으로 one to one t-test와 logistic regression stepwise, decision tree를 수행하여 의미있는 7개의 독립변수를 선별하였다. 그리고 통상적으로 사용되는 기준 수익률 수치(12%)가 의미있는 기준 수치인지 확인하기 위해 수치 값을 조절해가며 종속변수를 산출하여 예측모델을 구축해보았다. 그 결과 12%의 기준 수익률 수치로 산출한 종속변수를 이용하여 구축한 예측모델의 평균 Hit ratio가 64.60%로 가장 우수하다는 결과를 얻었다. 다음으로 선별된 7개의 독립변수들과 12%를 기준으로한 수익률 달성유무 종속변수를 이용하여 판별분석, 로지스틱 회귀분석, 의사결정나무, 인공신경망, 유전자알고리즘 선형 모델의 5가지 방법론을 적용해 예측모델을 구축해보았다. 5가지 방법론으로 도출한 예측 모델 간 Hit ratio를 비교한 결과 인공신경망을 이용하여 구축한 예측모델의 Hit ratio가 67.4%로 가장 우수한 결과를 도출해내었다. 본 연구를 통해 추후 NPL시장 신규 물건 매매에 있어서 7가지의 독립변수들과 인공신경망 예측 모델을 활용하는 것이 효과적임을 증명하였다. 물건의 12% 수익률 달성 여부를 사전에 예측해봄으로써 유동화회사가 투자 의사결정을 하는 데에 도움을 줄 것으로 예상하며, 나아가 NPL 시장의 거래가 적정한 가격 선에서 진행됨으로 인해 유동성이 더욱 높아질 것이라 기대한다.

WebGIS 기반의 시뮬레이션 시스템을 위한 지리공간 시뮬레이션 프레임워크 개발 (Development of Geospatial Simulation Framework for WebGIS-based Simulation System)

  • 이성규;김영섭;최철웅;서용철
    • Spatial Information Research
    • /
    • 제18권5호
    • /
    • pp.119-131
    • /
    • 2010
  • 연구자가 공간자료를 이용하기 위해서는 자료 포맷 분석, 리포맷팅, 지도투영 변환 등의 반복된 작업이 필요하다. 연구자는 이러한 문제를 해결하기 위해 개발자와 함께 웹 기반의 시뮬레이션 시스템을 구축하고 있다. 하지만, 공간자료를 이용하는 웹 기반의 시스템에 적절한 시뮬레이션 프레임워크가 없어 효율적인 개발에 어려움이 있다. 본 연구에서는 웹 기반 시스템에 효율적으로 적용할 수 있는 지리 공간 시뮬레이션 프레임워크를 설계하고 제안하였다. 프레임워크의 모듈은 웹 매핑 서비스, Geographic Information System(GIS) 매핑, 통계, 모델, 프로세싱, 그래픽, 공간 데이터세트 등 7개의 모듈로 구성되었다. 프레임워크의 효율성 평가를 위해 도시 성장을 사례로 검증하였으며, 공간정보분야에 전문지식이 없는 비전문가라도 공간자료를 활용한 웹 기반의 시스템 구축이 쉬울 것으로 생각한다.

신경망을 이용한 초등학생 컴퓨터 활용 능력 예측 (Prediction of Elementary Students' Computer Literacy Using Neural Networks)

  • 오지영;이수정
    • 정보교육학회논문지
    • /
    • 제12권3호
    • /
    • pp.267-274
    • /
    • 2008
  • 신경망은 데이터로부터 반복적인 학습 과정을 통해 숨어 있는 패턴을 찾아내고, 새로운 데이터의 목표값에 대한 정확한 예측에 유용한 모델링 기법이다. 본 논문은 개인적인 특성, 가정 사회적 환경, 타 교과 성적을 이용하여 학생의 컴퓨터 활용 능력 예측을 위한 다층 인식모형(MLP) 신경망을 구축하였다. 신경망의 인식률은 예측 방법으로 널리 활용되고 있는 로지스틱 회귀분석 모델과 비교하였다. 개발한 신경망에 대한 실험 결과, 개인적인 특성이 학생들의 컴퓨터 활용 능력을 가장 잘 설명하는 요소이며, 반면 가정 사회적 환경은 가장 낮은 예측 요소임을 발견하였다. 또한 본 연구의 신경망 모델은 회귀분석보다 더욱 높은 인식률을 나타냈다.

  • PDF

Real-time Laying Hens Sound Analysis System using MFCC Feature Vectors

  • Jeon, Heung Seok;Na, Deayoung
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.127-135
    • /
    • 2021
  • 산란계사와 같이 매우 좁은 환경에서 많은 개체를 사육하는 경우 작은 환경 변화에도 큰 피해를 받을 수 있다. 이와 같은 문제를 해결하기 위해 본 연구에서는 끊임없이 소리를 발생하는 산란계의 특성을 이용하여 산란계 발성음 분석 시스템을 제안한다. 기존의 산란계 발성음 시스템은 산란계사의 제한된 상황만을 고려하거나 실제 산란계사에 적용하기에는 어려움을 가지고 있다. 이러한 문제를 극복하기 위하여 본 논문에서는 MFCC 특징 벡터를 이용한 9가지의 산란계 소리 분석을 통해 실제 산란계사 환경에서 발생하는 수 있는 7가지의 상황을 실시간으로 감지할 수 있는 새로운 산란계 발성음 분석 모델을 제안한다. 본 논문에서 제안한 분석 모델을 실제 산란계사에서 성능 평가를 진행한 결과, 평균 AUC 0.93의 분류 성능을 나타내어 기존의 주파수 기반의 특징 분석 방법에 비해 약 43% 향상된 결과를 보여주었다.

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.