• Title/Summary/Keyword: 로브형버너

Search Result 2, Processing Time 0.016 seconds

A Study of Characteristics of NOx Emission in Lobed Burner (로브형 버너에서의 NOx 배출 특성에 관한 연구)

  • Cho, H.C.;Cho, K.W.;Lee, Y.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To evaluate the effect of lobed structure on pollutant emission, an experimental study examines NOx and CO emissions associated with four burner geometries, such as a conventional circular burner and three lobed ones. Rapid mixing allowed by the lobed burner to produce lean premixed flames, with narrower flame stability diagram than for the conventional circular one. Conventional circular burner of wide and uniform burner rim has an advantage of flame stabilization. Correlation on fuel discharge velocity for flame blowout should be included a variable related to the wall effect of the burner. NOx emission reduces by about 5% at the burner with lobed structure in fuel discharge side compared to conventional circular one. This is due to lower flame temperatures through flame elongation and increased radiative heat losses, caused by partially luminous flame in flame front. Meanwhile, at the burner with lobed structure in air discharge side and both fuel and air discharge sides, NOx emission somewhat increases with reduced radiative heat losses in spite of flame elongation. Therefore, the rapid mixing by lobed structure does not always have an advantage on NOx reduction.

  • PDF

Characteristics of NOx emission in lobed burner (로브형 버너에서의 NOx 배출특성)

  • Cho, H.C.;Cho, K.W.;Lee, Y.K.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.140-147
    • /
    • 2000
  • Using lobed burner, flame visualization and measurements of NOx and CO concentration in the combustor exit were carried out to evaluate the relation between the lobed structure in a burner and pollutant emission characteristics. The flame stability is enhanced by the lobed burner compared to conventional circular one. The correlation on fuel discharge velocity for flame blowout should be included on a variable related to the wall effect of the burner, because the flame blowout is observed at the burner having large perimeter. The burner having lobed structure in fuel discharge side compared to conventional burner reduces by 5% NOx emission due to lower flame intensity through flame elongation. Meanwhile the burner having lobed structure in air discharge side and both fuel and air discharge side increase the NOx emission.

  • PDF