• 제목/요약/키워드: 로봇 활용

검색결과 1,255건 처리시간 0.023초

도시 브랜드의 전략적 활용을 위한 빅데이터 분석 : 서울시 도시 브랜드 "I SEOUL U" 사례 (Big Data Analysis for Strategic Use of Urban Brands: Case Study Seoul city brand "I SEOUL U")

  • 임혜원
    • 한국콘텐츠학회논문지
    • /
    • 제22권1호
    • /
    • pp.197-213
    • /
    • 2022
  • 본 연구에서는 서울시 도시 브랜드 I SEOUL U에 대한 인식과 평가를 분석하기 위하여 온라인 빅데이터를 대상으로 한 텍스트마이닝 분석을 수행하였다. 이를 위하여 데이터 수집 및 분석을 위한 처리 프로그램인 텍스톰(Textom)을 사용하였고 'I SEOUL U' 키워드를 분석키워드로 선정하였다. 키워드 분석 결과 I SEOUL U와 관련된 키워드는 첫째, 비즈니스와 마케팅 관련 용어로서 팝업 스토어, 갤러리, 공동 브랜드, (축제 등) 개최, 상품, 민간기업, 온라인 등이다. 둘째, 이벤트 관련 용어로서 한강, 식목일, 나무 심기, 홍대, 크리스마스, 마포구, 중구, 세종대, 축제거리 등이다. 셋째는 홍보 관련 용어로서 로봇공학박사 데니스 홍, Government, 조형물, Korea 등이었다. N gram 분석 결과에서는 서울시 브랜드로서 공익적 성격의 도시 브랜드인 I SEOUL U의 경우에도 민간 기업의 상업 활동에 많은 기여를 하는 것으로 밝혀졌다. 연결 중심성 분석에서는 비즈니스 및 마케팅, 이벤트, 홍보 등의 범주가 도출되었다. 매트릭스 분석에서는 제품 판매와 관련하여 주로 팝업 스토어의 아이템들이 많고 공동 브랜드 형태의 제품들이 개발되는 것으로 나타났다. 토픽 모델링에서는 총 10개의 토픽이 추출되었고 상업적 활용과 이벤트 축제에 관한 정보 니즈가 많은 것으로 나타났다.

재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘 (Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites)

  • 김다현;박만복;안준호
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2022
  • 화재, 붕괴, 자연재해 등의 재난 발생으로 건물 내부가 붕괴하는 경우, 기존의 건물 내부의 물리적 보안이 무력해질 확률이 높다. 이때, 붕괴 건물 내의 인명피해와 물적 피해를 최소화하기 위한 물리적 보안이 필요하다. 따라서 본 논문은 기존 연구되었던 장애물을 탐지하고 건물 내 붕괴된 지역을 탐지하는 연구와 인명피해를 최소화하기 위한 딥러닝 기반 객체 탐지 알고리즘을 융합하여 재난 상황의 피해를 최소화하기 위한 알고리즘을 제안한다. 기존 연구에서 단일 카메라만을 활용하여 현재 로봇이 있는 복도 환경의 붕괴 여부를 판단하고 구조 및 수색 작업에 방해가 되는 장애물을 탐지했다. 이때, 붕괴 건물 내 물체는 건물의 잔해나 붕괴로 인해 비정형의 형태를 가지며 이를 장애물로 분류하여 탐지하였다. 또한, 재난 상황에서 자원 중 가장 중요한 요구조자를 탐지하고 인적 피해를 최소화하기 위한 방법을 제안하고 있다. 이를 위해, 본 연구는 공개된 재난 영상과 재난 상황의 이미지 데이터를 수집하여 다양한 딥러닝 기반 객체 탐지 알고리즘을 통해 재난 상황에서 요구조자를 탐지하는 정확도를 구했다. 본 연구에서 재난 상황에 요구조자를 탐지하는 알고리즘을 분석한 결과 YOLOv4 알고리즘의 정확도가 0.94로 실제 재난 상황에서 활용하기 가장 적합하다는 것을 증명하였다. 본 논문을 통해 재난 상황의 효율적인 수색과 구조에 도움을 주며 붕괴된 건물 내에서도 높은 수준의 물리적 보안을 이룰 수 있을 것이다.

자율주행차량의 주차를 위한 딥러닝 기반 주차경로계획 수립연구 (Parking Path Planning For Autonomous Vehicle Based on Deep Learning Model)

  • 김지환;김주영
    • 한국ITS학회 논문지
    • /
    • 제23권4호
    • /
    • pp.110-126
    • /
    • 2024
  • 자율주차의 요소 중 하나인 경로계획(Path-planning)을 제안한다. 실제 주차장을 참고하여 수직주차와 수평주차로 주차장의 차로 너비, 주차 공간의 너비, 길이 등 주차장 구조와 주차 환경을 다양하게 설정한다. 출발점와 도착지점 등 각도와 환경을 다양하게 설정하여 경로데이터를 수집하고 수집한 데이터를 Deep Learning model에 넣어 학습시켜 자동주차경로계획 모델을 제안한다. 분석결과, 기 알고리즘(Hybrid A-star, Reeds-Shepp Curve)과 딥러닝 모델 모두 장애물에 충돌하지 않고 비슷한 경로를 생성하지만, 거리와 소모시간이 각각 0.59%, 0.61% 감소하여 효율적인 경로가 생성되었다. 또한, Switching point도 1.3개에서 1.2개로 감소하여 직진과 후진을 최대한으로 줄여 운전자의 피로를 줄일 수 있을거라 생각된다. 마지막으로 경로생성시간은 42.76% 감소하여 효율적이고 신속한 경로생성이 가능하여 향후 자율주행 중 자율주차의 경로 계획생성에 활용될 수 있으며, 차량작도에 따라 이동하는 주차로봇의 경로생성에도 활용될 수 있을 것으로 보인다.

조경산업 관점에서 4차 산업혁명 기술의 탐색 (Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective)

  • 최자호;서주환
    • 한국조경학회지
    • /
    • 제47권2호
    • /
    • pp.59-75
    • /
    • 2019
  • 본 연구는 조경산업의 관점에서 4차 산업혁명 기술을 탐색하여, 선순환적 가치증대에 필요한 기초자료를 제공하고자 수행하였다. 4차 산업혁명, 조경산업과 도시재생의 특성 등을 고찰하고, 체계적 연구에 적합한 기술 분류 체계를 틀로 선정하는 등 방법론을 설정하여 연구하였다. 먼저, 조경산업의 선순환적 가치증대에 활용이 가능한 디지털 데이터 기반의 4차 산업혁명 기술을 선별하였다. '요소기술 수준'에서 '핵심기술'인 사물인터넷, 클라우드 컴퓨팅, 빅데이터, 인공지능, 로봇, '주변기술'인 가상 증강현실, 드론, 3D 4D 프린팅, 3D 스캐닝이 디지털 데이터 기반의 4차 산업혁명 기술로 조명되었다. 조경산업에 특화하여 '트렌드 수준'으로 응용하면 선순환적 가치증대에 활용이 가능한 것으로 나타났다. '시스템 수준'은 하나의 범용기술로 분석하였으며, 플랫폼을 중심으로 요소기술 수준, 컴퓨터와 스마트기기 등이 유기적으로 상호연계되어 시스템화된 디지털 데이터 기반의 4차 산업혁명 기술로 조명되었다. 조경산업에 특화하여 '트렌드 수준'으로 응용하면 선순환적 가치증대에 효과적인 기술로 나타났다. 요소기술 수준을 응용한 트렌드 수준에서 제시된 모든 활용 방안의 구현과 시너지효과 창출이 가능하다. 스마트정원, 스마트공원 등이 추구해야 하는 수준으로 분석되었다. 트렌드 수준의 인접산업 기술 중에는 스마트시티, 스마트홈, 스마트팜 및 정밀농업, 스마트관광, 스마트헬스케어가 협업에 의한 연계성이 클 것으로 판단되었다. 다음으로, 도시재생 공공공간을 포함한 조경공간의 조성 유지관리 및 서비스에서 도구이자 소재로서, 트렌드 수준으로 응용된 관련 기술의 다양한 활용 방안이 조명되었다. 즉, 유비쿼터스 컴퓨팅의 실현으로 조경공간에서 디지털 기술의 기본적 특성이 반영된 초연결화, 초실감화, 초지능화, 초융합화되는 방안들이 제시되었다. 조경산업이 도시재생 사업에 참여함에 있어서도, 기존 업무를 비롯하여 새로운 성격의 요구 수용 및 조율, 교육, 컨설팅 등에서 가치를 증대하는데 효과적인 것으로 분석되었다. 특히, 조경영역 전반이 전략적 교두보로 유지관리를 연계하여, 트렌드 수준의 관련 기술을 시스템화할 때 선순환적 가치증대에 효과적인 것으로 나타났다. 산업구조 상, 다양한 경로에서 생산된 데이터와 정보를 유통시키는데 효과적이기 때문이다. 향후 디지털 데이터 기반의 4차 산업혁명 기술을 실제 조경공간의 조성 유지관리 및 서비스에 융합하여 실증하는 등의 후속적 연구가 필요하다.

첨단 시설물 점검 및 진단장비 검·인증제도 도입 필요성에 대한 연구 (A Study on the Necessity of Verification and Certification System of Inspection and Diagnostic Equipment for Infrastructure using Advanced Technologies)

  • 홍성호;김정곤;조재용;김태환
    • 한국재난정보학회 논문집
    • /
    • 제16권1호
    • /
    • pp.163-177
    • /
    • 2020
  • 연구목적: 최근 시설물 유지관리의 중요성이 높아짐에 따라 시설물 유지관리 분야에 첨단기술의 도입과 활용이 증가하고 있다. 첨단기술이 현장에서 실효적 효과를 발휘하기 위해서는 진단장비의 검인증제도를 통한 신뢰성 확보가 필요하나 제도도입에 대한 사회적인 요구와는 별개로 업계의 시각 및 현실적인 기술수준에는 차이가 존재하고 있다. 본 논문에서는 현황에 대한 종합 및 실무자에 대한 의견조사를 통해 합리적인 시설물 진단장비 검인증 제도의 도입 방향을 연구하였다. 연구방법: 시설물 점검 및 진단장비의 첨단기술 도입 및 활용 촉진을 위한 검인증제도 도입 필요성 및 시급성에 대하여 유지관리 및 건설 분야 실무자들을 대상으로 설문조사를 실시하였다. 또한 일본 및 국내 장비 관련 유사인증제도의 비교분석을 통해 첨단 시설물 진단장비에 대한 검인증제도 도입 방향을 검토하였다. 연구결과: 첨단기술 적용에 대하여 실무자 의견은 높은 비율로 유지관리 분야에 드론 및 로봇 등 첨단기술의 도입이 필요하며, 첨단기술 도입 시 현장에서 상당한 효과를 발휘할 것으로 조사되었다. 반면 현재 국내의 기술 수준은 상대적으로 낮아 기술적용에는 일정한 시간이 소요될 것으로 조사되었다. 또한 시설물 진단장비 검인증제도의 도입을 통해 신뢰성 높은 시설물 진단장비 보급될 것으로 조사되었다. 한편, 국내외 진단 및 계측 장비 등에 대한 유사제도 조사결과, 직접적으로 시설물 유지관리에 첨단기술을 적용한 장비를 검인증 하는 제도는 없으며, 다만, 일본에 진단장비의 성능평가 체계가 도입되어 있다. 국내의 융복합기술이 적용된 제품 인증제도 및 운용중인 186개 인증제도 가운데 유사한 21개 계측 및 진단장비 인증제도를 분석하여, 첨단시설물진단장비에 대한 검인증제도 도입방안을 제시하였다. 결론: 실무자들의 의견을 종합하면 시설물 유지관리 분야의 합리화를 위하여 진단장비에 대한 4차 산업혁명 기술의 적용과 신뢰성 높은 진단장비 활용을 지원하는 검인증제도의 도입은 충분한 타당성을 갖는 것으로 볼 수 있다. 그러나 현실적인 과제는 우리나라의 첨단기술 수준이 시급성에 비하여 낮게 평가되고 있어 첨단 시설물 점검 및 진단장비 검인증 제도는 기술적용 및 검증 수준을 고려한 단계적 확대 형태로 시행되어야 한다. 또한 검인증제도 도입과는 별개로 시설물 진단장비 첨단화 촉진을 위한 별도의 투자 및 지원과 노력이 필요 하다.

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.

교량 상판 하부 안전점검 로봇개발 (Development of Robotic Inspection System over Bridge Superstructure)

  • 남순성;장정환;양경택
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2003년도 학술대회지
    • /
    • pp.180-185
    • /
    • 2003
  • 도로를 통과하는 차량 통행량의 증가는 장기적으로 교량에 구조적인 손상을 유발시키기 때문에 교량의 유지관리 측면에서 심각한 문제로 대두되고 있으며 준공 단계부터 구조물의 유지관리에 대하여 관심을 기울이지 않으면 공용기간 중 만족할 만한 기능의 유지 및 확보는 불가능하다. 또한, 공황 중에 균열이나 변형 등과 같은 열화손상을 조기에 발견하여 기능상의 장애나 사고를 미연에 방지하기 위해서는 정기적인 점검을 통하여 유지관리를 실시해야 하나 이에 관한 관심도가 상대적으로 낮아 구조물 유지관리에 대한 새로운 인식의 전환과 이와 관련된 기술개발이 절실히 요구되고 있다. 본 연구는 현재 굴절차 또는 점검차에 점검 인력이 직접 탑승하여 실시하는 육안조사를 대체하기 위하여 작은 카메라가 부착된 로봇(Machine Vision System)이 장착된 Linear Motion Control of System을 교량 하부에 설치하고 작업자는 교량 상부에서 외관조사를 수행함으로써 점검자에 따라 주관적으로 점검결과가 도출되는 문제를 근본적으로 해결하고 점검시 안전성을 대폭 개선하며 화상에 검측된 열화 손상 자료를 이미지 프로세싱 기법을 이용하여 객관적이고 정량적인 자료로 저장 및 제공함으로써 교량 유기관리시스템을 위한 데이터베이스를 구축하는데 기여할 수 있는 교량 하부 외관조사 자동화 시스템을 개발하는 데에 그 목적을 두고 있으며 본 시스템을 통하여 교량의 보수 보강 시기를 보다 객관적으로 산정할 수 있어서 현재 매년 기하급수적으로 늘어나는 교량의 보수 보강 비용을 상당히 절감할 수 있을 것으로 기대된다.저장기간을 계산하면, 아세설팜칼륨의 혼용 비율이 높아질수록 저장기간이 길어져서, $50\%$로 혼용하였을 때 가장 긴 저장기간이 산정되어 $20^{\circ}C$에서는 178일, $30^{\circ}C$에서는 88일이 예측되었다. 아스파탐과 아세설팜칼륨의 혼용비율을 5:5, 7:3, 9:1로 달리하여 구연산 완충액 상에 녹인 후, 20, 40, $60^{\circ}C$에서 저장하였다 크기 추정법을 이용하여 단맛을 측정한 결과 20일간의 저장 기간 동안 $20^{\circ}C$$40^{\circ}C$에서는 단맛이 유지되는 것으로 나타났다.산도 $0.4\~0.8\%^{(10)}$에서도 식품 유해가능성을 가진 균이 상당수 검출되므로 원료의 수송, 김치의 제조 및 유통과정에서 병원균에 대한 오염방지에 유의하여야 할 것이다. 확인할 수 있었다. 이상의 결과에 의하면 고농도의 유기물이 함유된 음식물쓰레기는 Hybrid Anaerobic Reactor (HAR)를 이용하여 HRT 30일 정도에서 충분히 직접 혐기성처리가 가능하며, 이때 발생된 $CH_{4}$를 회수하여 이용하면 대체에너지원으로 활용 가치가 높은 것으로 판단된다./207), $99.2\%$(238/240), $98.5\%$(133/135) 및 $100\%$ (313)였다. 각각 두 개의 요골동맥과 우내흉동맥에서 부분협착이나

  • PDF

4차 산업혁명 대응을 위한 국방기술기획 분석 및 개선방안 연구 (A Study on the Analysis and Improvement of Defense Technology Planning in Response to the Fourth Industrial Revolution)

  • 노상우;송유하;최종민
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.551-556
    • /
    • 2018
  • 4차 산업혁명이 시대적 이슈로 떠오르며, 우리나라가 기술 후발주자의 위치에서 4차 산업혁명을 선도하는 '퍼스트무버'가 되기 위해, 빅데이터, 인공지능, 로봇, 사물인터넷, 3D 프린팅 등의 ICT 기술을 향후 어떻게 발전시켜 나아갈지 연구개발전략 수립의 중요성이 강조되고 있다. 본 논문에서는 4차 산업혁명이 우리사회에 미칠 파급효과와 현 국방기술기획체계의 현황을 분석하고, 국방의 R&D 관점에서 4차 산업혁명 기술의 국방 분야 활용을 위한 개선방안을 제시하였다. 현 국방 R&D 전략은 군에서 요구하는 무기체계의 연구개발을 통한 적시 전력화를 위해 각 무기체계의 핵심기술들을 사전에 확보하는 방향으로 초점을 맞추고 있다. 현 제도 하에선 4차 산업혁명 기술의 역할이 군에서 요구하는 무기체계의 일부 기능 구현으로 국한되게 된다. 이와 같은 제약의 개선방안으로써 소요무기체계가 결정되지 않았지만, 미래 전장을 선도하게 될 것으로 예상되는 기술 개발을 가능하게 하는 선도형 핵심기술 사업의 활성화와 4차 산업혁명 기술의 국방 R&D 체계 내의 역할 확대를 위해 무기체계 선도형 핵심기술 로드맵의 수립을 제안하였다.

다중 분류기의 판정단계 융합에 의한 얼굴인식 (Multi-classifier Decision-level Fusion for Face Recognition)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.77-84
    • /
    • 2012
  • 얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.

다변량 스트림 데이터 축소 기법 평가 (Evaluation of Multivariate Stream Data Reduction Techniques)

  • 정훈조;서성보;최경주;박정석;류근호
    • 정보처리학회논문지D
    • /
    • 제13D권7호
    • /
    • pp.889-900
    • /
    • 2006
  • 센서 네트워크는 애플리케이션 분야에 따라 데이터 특성과 사용자의 요구사항이 다양함에도 불구하고, 현존하는 스트림 데이터 축소 연구는 데이터의 본질적인 특징보다 특정 축소 기법의 성능 향상 측면에 중점을 두고 있다. 이 논문은 계층/분산형 센서 네트워크 구조와 데이터 모델을 소개하고, 선택적으로 축소 기법을 적용하기 위해 데이터 특성과 사용자의 요구에 적합한 다변량 데이터 축소 기법을 비교 평가한다. 다변량 데이터 축소 기법의 성능을 비교 분석하기 위해, 우리는 웨이블릿, HCL(Hierarchical Clustering), SVD(Singular Value Decomposition), 샘플링과 같은 표준화 된 다변량 축소 기법을 이용한다. 실험 데이터는 다차원 시계열 데이터와 로봇 센서 데이터를 사용한다. 실험 결과 SVD와 샘플링 기법이 상대 에러 비율과 수행 성능 측면에서 웨이블릿과 HCL기법에 비해 우수하였다. 특히 각 데이터 축소 기법의 상대 에러 비율은 입력 데이터 특성에 따라 다르기 때문에 선택적으로 데이터 축소 기법을 적용하는 것이 좋은 성능을 보였다. 이 논문은 다차원 센서 데이터가 수집되는 센서 네트워크를 디자인하고 구축하는 응용 분야에 유용하게 활용될 것이다.