• Title/Summary/Keyword: 로봇 팔

Search Result 247, Processing Time 0.028 seconds

Design of Robot Arm for Service Using Deep Learning and Sensors (딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계)

  • Pak, Myeong Suk;Kim, Kyu Tae;Koo, Mo Se;Ko, Young Jun;Kim, Sang Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.221-228
    • /
    • 2022
  • With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

The design of 6-axis robot arm with intelligent object detection and object movement function (지능적 객체검출과 물체이동 기능을 갖는 6축 로봇 팔의 설계)

  • Kim, Kyu-Tae;Koo, Mo-Se;Ko, Young-Jun;Park, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.417-420
    • /
    • 2021
  • 본 논문은 서비스 로봇 분야에서 활용 가능한, ROS기반의 객체검출과 이동 기능을 갖는 6축 로봇 팔의 설계 방법 및 성능 개선결과를 제시한다. 기구설계, 물체검출, 3D좌표생성을 통한 실시간 역 기구학 해석 방법 및 지능적 모터 및 센서 제어 방법 등에 대해 제시하였다. 특히 영상과 센서기반 처리를 통해 고정된 작업반경 내 물체를 지능적으로 검출하고 목표지점까지 이동시키며, ROS기반의 추출된 정보를 이용하여 동작의 오차를 최소화하기 위해 다관절 로봇 팔의 운동을 최적화하여 설계하였으며 다양한 관련 실험을 통해 주요성능을 검증하였다.

Object Detection and Operation Control of Robot Arm using ROS (ROS를 이용한 로봇 팔의 물체 검출 및 작업 제어)

  • Koo, Mo-Se;Go, Young-Jun;Kim, Kyu-Tae;Park, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.413-416
    • /
    • 2021
  • 본 논문에서는 서비스용 다관절 로봇팔의 주요기능인 다양한 컵의 검출과 조작, 이동등을 지능적으로 구현하기 위해 로봇 오픈소스 운영체제인 ROS(Robot Operation System)을 기반으로 관련 프로 그램을 개발하고 기능을 구현하였다. 연구의 주요 목표인 다양한 종류의 컵, 병과 같은 물체를 실수없이 집어서 옮기기 위한 처리과정으로 관심물체인식, 3D좌표생성, 결과데이터의 역 기구학 해석등을 수행하였으며, 이를 통해 각 기구부의 축들이 물체에 정확히 도달하고 동작의 오류를 최소화하기 위해 ROS기반의 6축 서비스 로봇팔을 활용한 경로 생성과정과 물체의 검출 성능 과정 및 실험등을 제시하였다.

Java based Platform for Educational Robots on AVR (교육용 AVR 로봇의 자바기반 플랫폼)

  • Lee, Lee-Sub;Kim, Seong-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.17-29
    • /
    • 2009
  • C programming is a main programming for the Educational Robot Arm which is based on AVR ATmega128. The development environment is not integrated, so it is complex and difficult to study for middle or high school students who want to learn programming and control the educational robot arm. Furthermore, there is no debug and testing environment support. This paper presents a Java-based development platform for the educational robot arm. This platform includes: an up-to-date tiny Java Virtual Machine (NanoVM) for the educational robot arm; An Eclipse based Java integrated development environment as an Eclipse plug-in; a 3D simulator on the PCs to support testing and debugging programs without real robots. The Java programming environment makes development for educational robot arm easier for students.

  • PDF

Realization for EMG Signal Sensing and Vertical Control System of Robotizing Arm (EMG신호 센싱과 로봇팔의 수직제어시스템 구현)

  • Han, Sang-Il;Ryu, Kwang-Ryol;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.161-164
    • /
    • 2008
  • A realization for EMG signal sensing and vertical control system of robotizing arm is presented in this paper. The system is realized that a fine EMG bio-signals of humans' arm muscle are detected by surface electrode sensor, making a high performance amplifier and filtering, converting analog into digital signal and driving a servomotor for robotizing arm. The system is experimented by monitoring multiple step vertical control angles of robotizing arm corresponding to EMG signals in moving arm muscles. The experimental result are that the vertical control level is measured to around 2 degrees and mean error is 5% approximately.

  • PDF

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.

A Study on Robotic Arm for Remote Control System Development (원격 로봇 팔 제어 시스템에 관한 연구)

  • Pyo, Se-Yeol;Yoon, Dong-Kyu;Ko, Hyun-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1049-1050
    • /
    • 2017
  • 로봇은 인간의 편의, 위험한 사고지역, 작업환경에 투입되기 위해 개발 된다. 본 논문에서는 사람의 팔 역할을 하는 로봇 팔을 원격 시스템을 통하여 제어하는 방법에 대해 서술하며 위험한 사고지역이나 여러 분야에 응용 될 수 있음을 제시한다.

Design on the Controller of Flexible Robot using Sliding Sector Control (슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계)

  • Han, Jong-Kil;Bae, Sung-Hwan;Yang, Keun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.541-546
    • /
    • 2010
  • When a flexible arm is rotated by a motor about an joint axis, transverse vibration may occur. The motor torque should be controlled in such a way that the moter rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, the dynamic model of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Nonlinear control with hysteresis deadzone using the sliding sector theory with continued input function in the sector is proposed.

A Study on the Active Vibration Control of the Flexible Robot Arm Using a Rate Gyro (레이트 자이로를 이용한 유연한 로봇팔의 진동제어에 관한 연구)

  • 임준영;박인오;오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1112-1118
    • /
    • 1990
  • The end tip position control of a flexible robot arm has been presented by utilizing the feedback signal from the rate-gyro mounted at the end tip. Kalmann filter and the state feedback gains were determined by optimal sense based upon the parameter from the geometrical and electrical data of the flexible arm system. The simulation and experiment were performed and it has been proved that implementation of the rate-gyro drastically improves the performance.