• 제목/요약/키워드: 로봇 발

검색결과 62건 처리시간 0.019초

소프트 로봇용 4D 프린팅 소재 (4D Printing Materials for Soft Robots)

  • 이선희
    • 한국의류산업학회지
    • /
    • 제24권6호
    • /
    • pp.667-685
    • /
    • 2022
  • 본 원고는 소프트 로봇용 4D 프린팅 소재와 어그제틱 구조체에 대한 연구 동향을 정리한 것이다. 먼저 4D 프린팅 소재의 형상 변화 거동을 형상 변화와 형상기억 소재, 이중, 삼중, 다중 형상기억 효과, 접힘과 굽힘, 표면지형별로 구분하여 알아보았다. 형상 변화와 형상기억 소재 등 열이나 수분의 자극에 가역적/비가역적 혹은 규칙적/불규칙적 형상 변형이 가능할 수 있다. 다음으로, 차원별 형상이동 유형에 따른 특성과 물성에 대해 알아본 바, 1차원에서 다차원으로의 형상이동을 1D-1D 팽창/수축, 1D-2D 접힘/굽힘, 1D-3D 접힘 (1D-to-3D folding)으로 구분할 수 있다. 2차원에서 형상이동은 2D-2D 굽힙, 2D3D 굽힘/접힘/꼬임/표면말림/표면지형변화/굽힘과 꼬임, 3차원에서 다차원으로의 형상이동은 3D-3D 굽힙과 3D-3D 선형/비선형 거동으로 구분할 수 있다. 마지막으로 4D 프린팅 메타구조체 중 힌지 구조체를 적용한 KinetiX는 단일단위 터셀레이션과 다중단위 터셀레이션으로 모델링할 수 있고, 평면 및 공간 변환이 용이하고, 컨포머블 헬멧에 적용할 수 있다. 키리가미 구조체를 기본으로 한 공압형 어그제틱 구조체는 역설계 기반 구조체로써 굽힘각도를 제어하는 알고리즘으로 설계할 수 있다. 설계 후 3D 프린팅하여 TPU 멤브레인으로 프로토 타입을 제조하였고, 압력을 낮추면서 원하는 3차원 형상으로 완성될 수 있음을 확인하였다. 온도나 습도 등의 외부자극요소에 따라 형상이나 물성을 변화할 수 있는 재료를 사용하여 변형가능한 3차원 구조체로 성형한 4D 프린팅 소재를 이용하여 상지, 하지, 손, 발 등 소프트 로봇의 외골격(exoskeleton) 소재에 적용할 수 있을 것이다. 즉 자세제어, 상황인식, 동작신호 생성 등 다양한 환경에 대응하여 착용자의 움직임에 고하중, 고기동성, 운동지속성을 지원하는 기능을 갖는 소프트 로봇용 4D 프린팅 소재는 헬스케어 웨어러블 의류 제품화 개발로의 용도 전개가 가능할 것이다. 특히 4D 프린팅 소프트 소재 및 공정개발 분야는 일상 생할 보조용이나 재활치료용 의류를 개발하기 위한 3D 프린팅 소재 및 공정의 원천 기술에 해당하므로 이와 관련한 연구의 기초 자료로서 활용되기를 기대한다.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.