• 제목/요약/키워드: 로봇핸드

검색결과 56건 처리시간 0.023초

수직 다관절 사과수확로봇의 매니퓰레이터 개발 (I) -설계.제작- (Development of Manipulator for Vertically Moving Multi-Joint Apple Harvesting Robot(I) -Design.Manusacturing-)

  • 장익주
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.399-408
    • /
    • 2000
  • This study is final focused on developing fruit harvesting robot can distinguish fruit type and status accurately. Multi-joint robot is able to discriminate tree shape and select mature fruit by image processing. The multi-joint robot consists of (a) rotating base, (b)turning first joint-arm, (c)rotating and turning second joint-arm, (d)rotating and turning third joint-arm, (e)rotating and turning last joint and (f)picker hand. The operational ranges of the robot are: horizontal 860~2,220mm, vertical 1,440~2,260mm, 270 degrees’rotation angle, 90 or 270 degrees’turning angle. The robot weighs 330kg. The multi-joint robot was designed in high accuracy and efficiency by getting as close as the movements of human arms and waist.

  • PDF

기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발 (Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis)

  • 이건;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

스마트 웰니스 로봇 플랫폼 개발에 관한 연구 (A Study on Development of a Smart Wellness Robot Platform)

  • 이병수;김승우
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.331-339
    • /
    • 2016
  • 본 논문에서는 노령화 사회에서 노인들의 기본 건강과 생활을 케어 할 수 있는 홈 웰니스 로봇 플랫폼을 개발한다. 실내 환경에서 웰니스 서비스에 초점을 맞추어 로봇 및 센서 플랫폼을 구현한다. 로봇플랫폼에서는 정밀제어 이동기능과 정교한 로봇 팔 및 핸드를 개발하고 인간친화형 로봇구조로 설계되어진다. 이동로봇은 옴니휠 기반의 쾌속 시스템으로 제어된다. 로봇팔은 섬세한 조작기능을 수행할 수 있도록 인간의 팔과 유사한 구조로 구현한다. 센서 플랫폼에서는 RF태그와 스테레오 카메라를 활용하여 로봇자신과 대상물체의 위치 인식시스템을 구축한다. 정확한 위치와 자세 인식을 위하여 센서 융합 알고리즘이 제안된다. 끝으로 웰니스 로봇 플랫폼의 좋은 성능들이 실시간 시험 구동을 통하여 확인되어 진다.

최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정 (Parameter Identification of Robot Hand Tracking Model Using Optimization)

  • 이종광;이효직;윤광호;박병석;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발 (Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes)

  • 김두형;신내호;오명호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

계층적 분석방법을 이용한 퍼지 로봇 핸드의 양방향 제어의 구현 (Implementation of Bilateral Control of fuzzy Robot Hand using Analytic Hierachy Process)

  • 진현수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2827-2830
    • /
    • 2003
  • Tele manipulator is distingushed from industrial robot by iterating same specified work. Manipulator operator is included in control loop for controlling the telemanipulator because he decide directly during the work and order controllabily reducing the modelling error of telemanipulator which depend on the PID controller. But position-force control method of bidirectional control impose unsafety of vibiration and Analytic Hierachy Method can stabilize for reducing nonlinear modelling error by expert operator because of transformation empirical control rule to linear model.

  • PDF

휠체어 장착형 지능형 재활 로봇을 위한 칼라 비전 시스템 (Color Vision System for Intelligent Rehabilitation Robot mounted on the Wheelchair)

  • 송원경;이희영;김종성;변증남
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.75-87
    • /
    • 1998
  • KARES(KAIST Rehabilitation Engineering System)는 보조자 없이 팔과 다리가 불편한 장애인과 노약자가 쉽게 이동하며 일상 생활을 하는 것을 돕기 위하여, 6 자유도의 로봇 팔과 휠체어에 장착한 형태의 재활 로봇 시스템이다. 재활 로봇 시스템에서 로봇 팔을 프로그램하고 제어할 수 있는 인터페이스 장치는 매우 중요하다. 특히 사용자가 로봇 팔을 직접 제어하는 경우, 사용자의 인지력의 부담이 심하고 조작의 어려움을 느낀다. 이에 대한 해결책으로 로봇이 자율적으로 작업을 수행하기 위한 칼라 비전 시스템을 제안하고 기본적으로 필요한 네 가지 작업을 정하였다. 로봇 팔에 아이-인-핸드 형태로 카메라를 장착하여 칼라 비전 시스템을 구축하고, 탁자 위에 있는 칼라 표식이 부착된 컵을 잡는 작업과 작은 컵을 입 근처로 이동하는 작업을 구현하였다. 그 결과, 실내 환경에서 실시간에 성공적으로 수행되었다.

  • PDF

유비쿼터스 환경에서 사용 가능한 핸드 헬드형 3차원 움직임 추적장치 (A Handheld 3-Dimensional Motion Tracking Device for Ubiquitous Computing Environment)

  • 박명관;이상훈;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1045-1050
    • /
    • 2005
  • This paper describes a design experience of a low-cost 6 DOF spatial tracker system where relative low accuracy and relatively long ranges, wireless communication will be achieved by means of low cost accelerometers and gyros with contemporary microprocessor. However, there are two key problems; one is the bias drift problem and the other is that single or double integration of acceleration signal suffers not only from noise but also from nonlinear effects caused by gravity. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Several experimental results are shown to validate our proposed algorithms.

로봇핸드 핑거의 설계 및 운동학적 해석에 관한 연구 (A study on Design and Kinematics Analysis of Robot Hand Fingers)

  • 원종범;하언태;김병창;조상영
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.231-240
    • /
    • 2015
  • In this paper, it was presented to design and analyze the kinematics of grasping a rigid object by means of multi-degrees-of-freedom hand fingers. It is shown firstly that a set of kinematic equation describing dynamics system of the arm and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It has been presented secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this research, the control method for static stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the kinematic grasping of the hand fingers of robot.

인간형 다지 다관절 로봇 핸드의 개발 (Design and Control of Anthropomorphic Robot hand)

  • 천주영;최병준;채한상;문형필;최혁렬
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.