• Title/Summary/Keyword: 로봇매니퓰레이터

Search Result 377, Processing Time 0.034 seconds

Design of Driving Control Unit and Milking Robot Manipulator (착유로봇 매니퓰레이터와 구동제어장치 설계)

  • Shin, Kyoo Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.238-247
    • /
    • 2014
  • The milking robot system is very important to detect correctly the teats position in the moving condition of cow. Also, the robot manipulator must control tracking the teat cup to the detected teat position. The presented milking robot is designed using the one point laser sensor for teat position detection. The teats of cow are detected by the laser scanning unit and the manipulator has the function of 3 axes moving control unit. The presented teat detection method and the electrical driving manipulator have the advantages of a simple, low cost and very quiet. The designed manipulator is realized by the totally electrical motor and servo poison control algorithm with velocity PID compensation. The presented robot is realized using the teat detection unit, 4 teat cups, 3 axes robot arm, 6 servo motors and automatic milking control line. The designed robot is experimented in the cow farm and is satisfied with the designed performance specification for milking robot manipulator.

Design of a Robust controller of Robot Manipulators (로봇 매니퓰레이터에 대한 강인 제어기 설계)

  • Lee, Young-Chan;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.99-102
    • /
    • 2001
  • 본 논문에서는 파라미터 불확실성이 유한한 로봇 매니퓰레이터에 대한 비선형 강인 제어기법을 제안한다. 파라미터의 불확실성을 보상하는 강인제어시 발생되는 정강 상태 오차를 개선시키기 위하여 오차 관련 함수에 추종오차의 적분항을 추가시키고 제어입력에 이 적분항이 포함되도록 한다. 설계된 제어시스템의 안정도는 Lyapunov 기법에 의하여 해석한다. 파라미터 불확실성을 가지는 로봇 매니퓰레이터에 대한 컴퓨터 시뮬레이션을 통하여 제안된 기법의 성능을 확인하고 5 링크 2 자 유도의 FARA 로봇에 대한 실험을 통하여 제안된 기법이 실용 로봇제어에 적용될 수 있음을 보이고자 한다.

  • PDF

A Study on RT Component Implementation for Cooperation Robot of 7 Degree of Freedom Manipulator using RT Middleware (RT 미들웨어를 이용한 7자유도 매니퓰레이터 협업로봇을 위한 RT 컴포넌트 구현에 관한 연구)

  • Moon, Yong-Seon;Bae, Young-Chul;Roh, Sang-Hyun;Cho, Kwang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.142-147
    • /
    • 2011
  • In this paper, we make a RT component as a configuration element of cooperation robot of 7 degree of freedom manipulator using RTM which was adapted international standardization among the robot middleware technology. We implemented the one system by connecting the RT component of elements of a robot organize to each other based on middleware network and tested an operation of implemented system using the 7 degree of freedom manipulator which was real made.

Force/position control of robot manipulator via motion dynamics (모션 다이나믹스를 이용한 로봇 매니퓰레이터의 힘/위치 제어)

  • Im, Gyu-Man;Ham, Un-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.264-269
    • /
    • 1996
  • 본 논문에서는 디스트리뷰션 인테그랄 서브매니폴드에 의하여 표현되는 마찰이 없는 면을 따라 강체 로봇 매니퓰레이터의 모션 제어에 대한 새로운 힘.위치 제어법칙은 힘/위치가 제어되는 방향으로 투영된 앤드 이팩트의 비선형 항을 정확하게 상쇄하도록 설계하였으며, 미분기하학을 이용하여 스무스 디스트리뷰션의 인테그랄 서브매니폴드 상에서의 새로운 모션 방정식을 제안하고 제안된 힘/위치 제어법칙에 대한 타당성을 컴퓨터 시뮬레이션을 통하여 검증한다.

  • PDF

Telerobot System for Biocell Manipulation (바이오셀 조작을 위한 원격조작 로봇 시스템)

  • Gaponov, Igor;Cho, Hyun-Chan
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.193-199
    • /
    • 2011
  • In this paper, we propose a novel manipulator intended for the needs of telerobotic micromanipulation. We designed an original manipulator capable of performing fine motion with an accuracy greater than $2{\mu}m$, while remaining simple in design and easy in control. Preliminary calculations of manipulator accuracy have been conducted, and the device has been designed and manufactured accordingly. The accuracy of the proposed manipulator has been verified during the series micro-positioning experiments under different types of controllers, and the results proved that the manipulator is suitable for micromanipulation applications as a part of telerobotic system. The proposed manipulator has been compared to existing analogues by several parameters, and both its advantages and disadvantages have been discussed.

  • PDF

Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator (유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural network learning algorithms. The proposed system learns membership functions for input variables using unsupervised competitive learning algorithm and output information using supervised outstar learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The control input to the process is determined by error, velocity and variation of error. Simulation and experiment results show a robustness of ACFAC compared with the PID control and neural network algorithms.

  • PDF

Study on Robot Manipulator applying the Gravity Compensator (중력 보상기를 적용한 로봇 매니퓰레이터 연구)

  • Choi, Hyeung-Sik;Hur, Jae-Gwan;Seo, Hae-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • In this paper, the structure of a gravity compensator was studied, and the 6-axis robot manipulator which is newly developed by applying the gravity compensator is presented to improve the torque performance of the robot joint. The kinematics analysis on the robot was presented. Also, a simulation of the performance of the joint actuator of robot adopting the gravity compensator was presented by applying various springs. According to the simulation results, it was validated that the payload effect on the robot joint actuator adopting the gravity compensator is reduced in proportion to the spring intensity of the gravity compensator.

Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera (능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-12
    • /
    • 2005
  • A Mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment. because it has the higher performance than a fixed base manipulator in regard to the size of it's operational workspace. Unfortunately the use of a mobile robot introduces non-holonomic constraints, and the combination of a mobile robot and a manipulator generally introduces kinematic redundancy. In this paper, first a method for estimating the position of object at the cartesian coordinate system acquired by using the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and real object is proposed. Second, we propose a method to determine a optimal path between current the position of mobile manipulator whose mobile robot is non-holonomic and the position of object estimated by image information through the global displacement of the system in a symbolic way, using homogenous matrices. Then, we compute the corresponding joint parameters to make the desired displacement coincide with the computed symbolic displacement and object is captured through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiment using the mobile manipulator.

Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method (라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획)

  • Luo, Lu-Ping;Hwang, Soon-Woong;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2370-2378
    • /
    • 2015
  • This paper proposes an algorithm using Lagrange interpolation method to realize trajectory planning for torque minimization of robot manipulators. For the algorithm, position constraints of robot manipulators should be given and the stability of robot manipulators should be satisfied. In order to avoid Runge's phenomenon, we set up time interpolation points using Chebyshev interpolation points. After that, we found suitable angle which corresponds to the points and then we got trajectories of joint's angle, velocity, acceleration using Lagrange interpolation method. We selected performance index for torque consumption optimization of robot manipulator. The method went through repetitive computation process to have minimum value of the performance index by calculated trajectory. Through the process, we could get optimized trajectory to minimize torque and performance index and guarantee safety of the motion for manipulator performance.

The Control of Robot Manipulator us ins Fuzzy Inverse Kinematics Mapping and Genetic Algorithm (퍼지 역기구학 맵핑과 유전자 알고리즘을 이용한 로봇 매니퓰레이터의 제어)

  • Joo Young-jin;Choi Woo-Kyung;Yon Jung-Heum;Kim Sung-hyun;Jeon Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.309-312
    • /
    • 2005
  • 로봇 매니퓰레이터의 제어를 위해서는 정확한 값의 역기구학 값을 구해야한다 하지만 일반적으로 역기구학의 경우 그 계산 과정이 매우 복잡하여 실시간으로 처리하기 어렵다는 문제점이 있다. 본 논문에서는 로봇 매니퓰레이터를 퍼지 역기구학 맵핑 기법을 기반으로 제어를 한 후, 정기구학을 적합도 함수로 사용하는 유전자 알고리즘을 이용하여, 좀더 빠르고, 높은 정확도를 가지는 제어를 구현하고자 한다.

  • PDF