• Title/Summary/Keyword: 로버스트 추정

Search Result 74, Processing Time 0.021 seconds

Power Spectrum Estimation of EEG Signal Using Robust Filter (로버스트 필터를 이용한 EEG 신호의 스펙트럼 추정)

  • 김택수;허재만
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • Background EEG signals can be represented as the sum of a conventional AR process and an innovation process. It Is know that conventional estimation techniques, such as least square estimates (LSE) or Gaussian maximum likelihood estimates (MLE-G ) are optimal when the innovation process satisfies the Gaussian or presumed distribution. When the data are contaminated by outliers, however, these assumptions are not met and the power spectrum estimated by conventional estimation techniques may be fatally biased. EEG signal may be affected by artifacts, which are outliers in the statistical term. So the robust filtering estimation technique is used against those artifacts and it performs well for the contaminated EEG signal.

  • PDF

Modified Multivariate $T^2$-Chart based on Robust Estimation (로버스트 추정에 근거한 수정된 다변량 $T^2$- 관리도)

  • 성웅현;박동련
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • We consider the problem of detecting special variations in multivariate $T^2$-control chart when two or more multivariate outliers are present. Since a multivariate outlier may reflect slippage in mean, variance, or correlation, it can distort the sample mean vector and sample covariance matrix. Damaged sample mean vector and sample covariance matrix have difficulty in examining special variations clearly, An alternative to detection outliers or special variations is to use robust estimators of mean vector and covariance matrix that are less sensitive to extreme observations than are the standard estimators $\bar{x}$ and $\textbf{S}$. We applied popular minimum volume ellipsoid(MVE) and minimum covariance determinant(MCD) method to estimate mean vector and covariance matrix and compared its results with standard $T^2$-control chart using simulated multivariate data with outliers. We found that the modified $T^2$-control chart based on the above robust methods were more effective in detecting special variations clearly than the standard $T^2$-control chart.

  • PDF

Design of Modified ${\bar{x}}$-s Control Chart based on Robust Estimation (로버스트 추정에 근거한 수정된 ${\bar{x}}$-s 관리도의 설계)

  • Chung, Young-Bae;Kim, Yon-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Control charts are generally used for process control, but the role of traditional control charts have been limited in case of a non-contaminated process. Traditional ${\bar{x}}$-s control chart has not been activated well for such a problem because of trying to control processes as center line and control limits changed by the contaminated value. This paper suggests modified ${\bar{x}}$-s control chart based on robust estimation. In this paper, we consider the trimmed mean of the sample means and the trimmed mean of the sample standard deviations. By comparing with ARL value, the responding results are decided. The comparison resultant results of traditional control chart and modified control chart are contrasted.

Robust output feedback control of LTI system using estimated output derivatives (출력 미분값의 추정에 의한 선형 시불변 시스템의 로버스트 출력 궤환 제어)

  • Lee, Gun-Bok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.273-282
    • /
    • 1996
  • This work is conceded with the estimation of output derivatives and their use for the design of robust controller for linear systems with system uncertainties due to modeling errors and disturbances. It is assumed that a nominal transfer function model and quantitative bounds for system uncertainties and known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted through restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Control)type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Preliminary test estimation method accounting for error variance structure in nonlinear regression models (비선형 회귀모형에서 오차의 분산에 따른 예비검정 추정방법)

  • Yu, Hyewon;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.595-611
    • /
    • 2016
  • We use nonlinear regression models (such as the Hill Model) when we analyze data in toxicology and/or pharmacology. In nonlinear regression models an estimator of parameters and estimation of measurement about uncertainty of the estimator are influenced by the variance structure of the error. Thus, estimation methods should be different depending on whether the data are homoscedastic or heteroscedastic. However, we do not know the variance structure of the error until we actually analyze the data. Therefore, developing estimation methods robust to the variance structure of the error is an important problem. In this paper we propose a method to estimate parameters in nonlinear regression models based on a preliminary test. We define an estimator which uses either the ordinary least square estimation method or the iterative weighted least square estimation method according to the results of a simple preliminary test for the equality of the error variance. The performance of the proposed estimator is compared to those of existing estimators by simulation studies. We also compare estimation methods using real data obtained from the National Toxicology program of the United States.

Forming Weighting Adjustment Cells for Unit-Nonresponse in Sample Surveys (표본조사에서 무응답 가중치 조정층 구성방법에 따른 효과)

  • Kim, Young-Won;Nam, Si-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.103-113
    • /
    • 2009
  • Weighting is a common form of unit nonresponse adjustment in sample surveys where entire questionnaires are missing due to noncontact or refusal to participate. A common approach computes the response weight as the inverse of the response rate within adjustment cells based on covariate information. In this paper, we consider the efficiency and robustness of nonresponse weight adjustment bated on the response propensity and predictive mean. In the simulation study based on 2000 Fishry Census in Korea, the root mean squared errors for assessing the various ways of forming nonresponse adjustment cell s are investigated. The simulation result suggest that the most important feature of variables for inclusion in weighting adjustment is that they are predictive of survey outcomes. Though useful, prediction of the propensity to response is a secondary. Also the result suggest that adjustment cells based on joint classification by the response propensity and predictor of the outcomes is productive.

Characterization of low frequency between Droughts and Meteorological factor in Korea (우리나라 가뭄특성과 기상인자간의 저빈도 특성 분석)

  • So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.418-418
    • /
    • 2012
  • 현재 전 세계적으로 온실가스 농도 증가로 호우나 가뭄, 대설 등 지역에 따라 서로 상반되는 변화를 가져올 수 있다고 경고되고 있으며, 우리나라에서도 남해안지역과 경기북부지역에서 호우빈도가 증가하는 반면, 충정도 내륙지역과 경상북도에서는 호우빈도가 감소하고 5일 누적 강수량 또한 감소하여, 해당지역에서 가뭄이 발생할 경우 심화될 가능성이 높아진다고 보고된 바 있다. 기후변화 시나리오에 분석결과에서도 우리나라의 경우 평균적으로 강우일수는 작아지며, 강우강도는 커지는 결과들이 도출되었다. 이러한 결과들은 가뭄의 발생가능성이 높아지고 있음을 보여주고 있다. 본 연구에서는 우리나라에서 발생된 가뭄의 특성을 분석하고 가뭄의 특성과 기상인자간의 관계를 Quantile regression 분석을 통해 살펴보고자 한다. 가뭄의 특성과 기상인자(엘니뇨, 강수량 등)의 관계에 있어서 기상인자들의 평균을 이용하는 일반적인 회귀분석은 전체 데이터의 영향에 따른 가뭄특성인자와의 관계를 보여준다. 하지만 강수량과 가뭄과의 관계에서와 같이 강수량의 극값보다는 적은 강수량 혹은 무강우일수가 가뭄과 밀접한 관련을 보여준다. 이러한 점에서 이상치들에 영향을 배재할 수 있는 Quantile regression을 사용하여 Quantile에 따른 기상인자와 가뭄특성과의 관계를 규명하고 평가해 보고자 한다. 본 연구에서 적용한 Quantile Regression 기법은 회귀계수의 추정에 있어서 회귀인자의 신뢰성을 아래와 같은 Quantile-회귀계수 그래프를 통해 분석할 수 있으며, 로버스트 통계량의 특징인 분산이 적은 안정적인 추정량을 확보할 수 있는 장점을 갖는다. 아래식은 Quantile regression의 회귀계수 추정식을 나타낸다. $$arg\;in\;{n\\\;p(y_i-f(x_i,\;z_i,\;{\cdots}))\\ =1}$$ 여기서, $y_i$는 가뭄특성값을 $x_i$, $z_i$, $\cdots$는 기상인자를 나타낸다. $$p(y-q)={{\beta}(y-q)\;y{\geq_-}q \\ (1-{\beta})(q-y)\;y<q}$$ ${\beta}$는 quantile을 나타내며 0< ${\beta}$ <1범위를 갖는다.

  • PDF

Robust ridge regression for nonlinear mixed effects models with applications to quantitative high throughput screening assay data (비선형 혼합효과모형에서의 로버스트 능형회귀 방법과 정량적 고속 대량 스크리닝 자료에의 응용)

  • Yoo, Jiseon;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.123-137
    • /
    • 2018
  • A nonlinear mixed effects model is mainly used to analyze repeated measurement data in various fields. A nonlinear mixed effects model consists of two stages: the first-stage individual-level model considers intra-individual variation and the second-stage population model considers inter-individual variation. The individual-level model, which is the first stage of the nonlinear mixed effects model, estimates the parameters of the nonlinear regression model. It is the same as the general nonlinear regression model, and usually estimates parameters using the least squares estimation method. However, the least squares estimation method may have a problem that the estimated value of the parameters and standard errors become extremely large if the assumed nonlinear function is not explicitly revealed by the data. In this paper, a new estimation method is proposed to solve this problem by introducing the ridge regression method recently proposed in the nonlinear regression model into the first-stage individual-level model of the nonlinear mixed effects model. The performance of the proposed estimator is compared with the performance with the standard estimator through a simulation study. The proposed methodology is also illustrated using quantitative high throughput screening data obtained from the US National Toxicology Program.

Convergence Analysis of Adaptive L-Filter (적응 L-필터의 수렴성 해석)

  • Kim, Soo-Yong;Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1210-1216
    • /
    • 2009
  • In this paper we analyze the convergence behavior of the recursive least rank (RLR) L-filter. The RLR L-filter is an order statistics filter, filter coefficients of which are the weights according to the order of magnitude of inputs. And RLR L-filter is a non-linear adaptive filter, that uses RLR algorithm for coefficient updating. The RLR algorithm is a non-linear adaptive algorithm based on rank estimates in Robust statistics. The mean and mean-squared convergence behavior of the RLR L-filter is examined with variable step-sizes. The RLR L-filter adapts the median filter type to the heavy-tailed distribution function of impulse noise, and adapts the average filter type to Gaussian noises.

  • PDF

Clock Synchronization for Multi-Static Radar Under Non-Line-of-Sight System Using Robust Least M-Estimation (로버스트한 최소 M-추정기법을 이용한 비가시선 상의 멀티스태틱 레이더 클락 동기 기술 연구)

  • Shin, Hyuk-Soo;Yeo, Kwang-Goo;Joeng, Myung-Deuk;Yang, Hoongee;Jung, Yongsik;Chung, Wonzoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.1004-1010
    • /
    • 2012
  • In this paper, we propose the algorithm which considers applying recently proposed clock synchronization techniques with quite high accuracy in a few wireless sensor networks researches to time synchronization algorithm for multi-static radar system and especially overcomes the limitation of previous theory, cannot be applied between nodes in non-line of sight (NLOS). Proposed scheme estimates clock skew and clock offset using recursive robust least M-estimator with information of time stamp observations. And we improve the performance of algorithm by tracking and suppressing the time delays difference caused by NLOS system. Futhermore, this paper derive the mean square error (MSE) to present the performance of the proposed estimator and comparative analysis with previous methods.