• Title/Summary/Keyword: 렌즈 캘리브레이션

Search Result 27, Processing Time 0.021 seconds

Automatic Target Recognition for Camera Calibration (카메라 캘리브레이션을 위한 자동 타겟 인식)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.525-534
    • /
    • 2018
  • Camera calibration is the process of determining the parameters such as the focal length of a camera, the position of a principal point, and lens distortions. For this purpose, images of checkerboard have been mainly used. When targets were automatically recognized in checkerboard image, the existing studies had limitations in that the user should have a good understanding of the input parameters for recognizing the target or that all checkerboard should appear in the image. In this study, a methodology for automatic target recognition was proposed. In this method, even if only a part of the checkerboard image was captured using rectangles including eight blobs, four each at the central portion and the outer portion of the checkerboard, the index of the target can be automatically assigned. In addition, there is no need for input parameters. In this study, three conditions were used to automatically extract the center point of the checkerboard target: the distortion of black and white pattern, the frequency of edge change, and the ratio of black and white pixels. Also, the direction and numbering of the checkerboard targets were made with blobs. Through experiments on two types of checkerboards, it was possible to automatically recognize checkerboard targets within a minute for 36 images.

Study on the Brightness Temperature Measurement in the Human Body Using Millimeter-wave Radiometer (밀리미터파 라디오미터를 이용한 인체의 내부 밝기온도 측정에 관한 연구)

  • Jung, Min Kyoo;Kim, Tae Hun;Nah, Seung Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.163-167
    • /
    • 2016
  • We have developed a millimeter-wave radiometer system for applications in the fields of medical imaging. In this paper, we introduced the brightness temperature measurement in the human body using Millimeter-wave Radiometer. Calibration of sensitivity of the radiometer system is essential to measure equivalent temperature (brightness temperature) of objects. We have developed, as a calibration source, a new type of black body for the millimeter wave region with temperature control capability. The system noise figure and temperature sensitivity of the system measured using the blackbody are 3.3 dB and 0.1 K, respectively. The brightness temperature of human body through clothes was measured to be around $38^{\circ}$[C].

Camera Calibration and Barrel Undistortion for Fisheye Lens (차량용 어안렌즈 카메라 캘리브레이션 및 왜곡 보정)

  • Heo, Joon-Young;Lee, Dong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1270-1275
    • /
    • 2013
  • A lot of research about camera calibration and lens distortion for wide-angle lens has been made. Especially, calibration for fish-eye lens which has 180 degree FOV(field of view) or above is more tricky, so existing research employed a huge calibration pattern or even 3D pattern. And it is important that calibration parameters (such as distortion coefficients) are suitably initialized to get accurate calibration results. It can be achieved by using manufacturer information or lease-square method for relatively narrow FOV(135, 150 degree) lens. In this paper, without any previous manufacturer information, camera calibration and barrel undistortion for fish-eye lens with over 180 degree FOV are achieved by only using one calibration pattern image. We applied QR decomposition for initialization and Regularization for optimization. With the result of experiment, we verified that our algorithm can achieve camera calibration and image undistortion successfully.

Gaze Tracking Using a Modified Starburst Algorithm and Homography Normalization (수정 Starburst 알고리즘과 Homography Normalization을 이용한 시선추적)

  • Cho, Tai-Hoon;Kang, Hyun-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1162-1170
    • /
    • 2014
  • In this paper, an accurate remote gaze tracking method with two cameras is presented using a modified Starburst algorithm and honography normalization. Starburst algorithm, which was originally developed for head-mounted systems, often fails in detecting accurate pupil centers in remote tracking systems with a larger field of view due to lots of noises. A region of interest area for pupil is found using template matching, and then only within this area Starburst algorithm is applied to yield pupil boundary candidate points. These are used in improved RANSAC ellipse fitting to produce the pupil center. For gaze estimation robust to head movement, an improved homography normalization using four LEDs and calibration based on high order polynomials is proposed. Finally, it is shown that accuracy and robustness of the system is improved using two cameras rather than one camera.

Real-Time Camera Tracking for Virtual Stud (가상스튜디오 구현을 위한 실시간 카메라 추적)

  • Park, Seong-Woo;Seo, Yong-Duek;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.90-103
    • /
    • 1999
  • In this paper, we present an overall algorithm for real-time camera parameter extraction which is one of key elements in implementing virtual studio. The prevailing mechanical methode for tracking cameras have several disadvantage such as the price, calibration with the camera and operability. To overcome these disadvantages we calculate camera parameters directly from the input image using computer-vision technique. When using zoom lenses, it requires real time calculation of lens distortion. But in Tsai algorithm, adopted for camera calibration, it can be calculated through nonlinear optimization in triple parameter space, which usually takes long computation time. We proposed a new method, separating lens distortion parameter from the other two parameters, so that it is reduced to nonlinear optimization in one parameter space, which can be computed fast enough for real time application.

  • PDF

Catadioptric Omnidirectional Stereo Imaging System and Reconstruction of 3-dimensional Coordinates (Catadioptric 전방향 스테레오 영상시스템 및 3차원 좌표 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4108-4114
    • /
    • 2015
  • An image acquisition by using an optical mirror is called as a catadioptric method. The catadioptric imaging method is generally used for acquisition of 360-degree all directional visual information in an image. An exemplar omnidirectional optical mirror is the bowl-shaped hyperbolic mirror. In this paper, a single camera omnidirectional stereo imaging method is studied with an additional concave lens. It is possible to obtain 3 dimensional coordinates of environmental objects from the omnidirectional stereo image by matching the stereo image having different view points. The omnidirectional stereo imaging system in this paper is cost-effective and relatively easy for correspondence matching because of consistent camera intrinsic parameters in the stereo image. The parameters of the imaging system are extracted through 3-step calibration and the performance for 3-dimensional coordinates reconstruction is verified through experiments in this paper. Measurable range of the proposed imaging system is also presented by depth-resolution analysis.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.