• Title/Summary/Keyword: 렌즈관련 사양

Search Result 3, Processing Time 0.02 seconds

An Excel Program for Dk Calculation of Contact Lens (엑셀 프로그램을 이용한 콘택트렌즈의 Dk 결정)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Purpose: The review article was written to establish an excel program that could calculate minimal Dk of contact lens without $O^2$ deficiency and actual $O^2$ concentration on cornea when contact lens were being fitted by changing lens-related factors. Methods: An excel program was formulated to calculate the thickness of post-lens lacrimal layer, Dk of contact lens and $O^2$ concentration on cornea. Results: With the excel program established, minimal $O^2$ concentration needed on cornea could be calculated when the thickness of post-lens lacrimal layer was changed by varying lens-related factors. A different route in the excel program was needed to choose based on the shape of lacrimal layer. The thickness of lacrimal layer was determined by the shape of meniscus made of tear between lens edge and cornea with flat fit. Thus, the $O^2$ concentration showing negative number in calculation decreased on peripheral cornea with flatter fitting and actual $O^2$ concentration would be zero on cornea. With tight fitting, the thickness of post-lens lacrimal layer is much thicker than lens itself thus negative number in calculation by the excel program is shown indicating zero oxygen on cornea. It can cause $O^2$ deficiency regardless of Dk of contact lens. Conclusions: The calculation of thickness of post-lens lacrimal layer and $O^2$ concentration on cornea by the established excel program is suggested to avoid $O^2$ deficiency when fitting state is varied by changing lens-related factors.

아토초 펄스의 전자 검출 장치 개발

  • Lee, Yun-Man;Kim, Gyeong-Rok;An, Byeong-Nam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.209-209
    • /
    • 2012
  • 전자의 에너지를 측정하기 위한 분석장치는 원자핵물리뿐만 아니라 화학과 생물학 등 다양한 분야에 걸쳐 매우 유용하게 사용될 수가 있다. 특히 최근에 극고속 과학과 관련해서 매우 짧은 펄스인 아토초 펄스의 발생에 대한 특성평가를 위해 매우 중요한 장치로 사용되고 있다. 그 중 VMI (Velocity Map Imaging) 방법은 TOF (Time of Flight) 방법과 유사하지만, CCD 카메라를 추가로 사용하여 이차원 이미지를 얻음으로써 전자의 운동에너지 및 각도 분포에 대한 정보를 얻을 수 있고 또한 전극에 인가되는 전압은 TOF와 달리 매우 높다. 이번 개발에서는 기존의 전극 렌즈의 geometry와 비교해서 VMI Spectrometer 전극 렌즈의 수를 늘려 multi-electrode concept을 도입함으로써 높은 운동에너지(~1000 eV)를 가진 전자들을 MCP detector상에서 imaging 하는데 있어 높은 공간 분해능(resolution)을 갖도록 설계하고, 또한 높은 사양의 MCP detector 및 CCD 카메라를 이용하여 시간 분해능을 높임으로써 아토초 펄스를 이용한 극고속 실험에 이용 가능하도록 제작하였다.

  • PDF

Optical Structural Design using Gaussian Optics for Multiscale Gigapixel Camera (상분할 방식의 기가픽셀 카메라를 위한 가우스 광학적인 구조설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2013
  • It was reported in Nature and the Wall Street Journal on June 20th, 2012 that scientists at Duke university have developed a gigapixel camera, capable of over 1,000 times the resolution of a normal camera. According to the reports, this super-resolution camera was motivated by the need of US military authorities to surveil ground and sky. We notice the ripple effect of this technology has spread into the area of national defense and industry, so that this research has started to realize the super-resolution camera as a frontier research topic. As a result, we can understand the optical structure of a super-resolution camera's lens system to be composed of a front, monocentric objective of a single lens plus 98 rear, multiscale camera lenses. We can also obtain the numerical ranges of specification factors related to the optical structure, such as the diameter of the aperture, and the focal length.