DOI QR코드

DOI QR Code

Optical Structural Design using Gaussian Optics for Multiscale Gigapixel Camera

상분할 방식의 기가픽셀 카메라를 위한 가우스 광학적인 구조설계

  • Received : 2013.08.14
  • Accepted : 2013.10.28
  • Published : 2013.12.25

Abstract

It was reported in Nature and the Wall Street Journal on June 20th, 2012 that scientists at Duke university have developed a gigapixel camera, capable of over 1,000 times the resolution of a normal camera. According to the reports, this super-resolution camera was motivated by the need of US military authorities to surveil ground and sky. We notice the ripple effect of this technology has spread into the area of national defense and industry, so that this research has started to realize the super-resolution camera as a frontier research topic. As a result, we can understand the optical structure of a super-resolution camera's lens system to be composed of a front, monocentric objective of a single lens plus 98 rear, multiscale camera lenses. We can also obtain the numerical ranges of specification factors related to the optical structure, such as the diameter of the aperture, and the focal length.

작년 6월 20일, 기존의 일반 카메라에 비해 화질이 1,000배 이상인 초고분해능의 기가픽셀카메라가 미국 듀크대의 과학자들에 의해 네이처에 보고되었고 이를 월스트리트 저널이 보도했다. 보도에 따르면, 이 카메라는 미군부의 필요에 의해 공중 및 지상배치감시를 목적으로 개발되었다는 것이다. 이 기술은 향후 국방과 산업분야의 전반에 걸쳐서 기술.경제적인 파급효과가 매우 클 것으로 예상되기 때문에 국내에서도 시급히 개발에 착수할 필요가 있다고 판단된다. 이에 본 연구에서는 슈퍼 분해능을 갖는 상분할 방식의 기가픽셀 카메라를 구현하기 위한 전초작업으로써 카메라 렌즈시스템의 광학적인 구조를 고찰하였고 더불어 구조와 관련된 렌즈사양 값들의 범위를 계산해 내었다.

Keywords

References

  1. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, "Multiscale gigapixel photography," Nature 486, 386-389 (2012). https://doi.org/10.1038/nature11150
  2. Wall Street Journal, "Next cameras come into view," June 21 (2012).
  3. Chosunilbo, "Gigapixel camera of Duke university," June 21 (2012).
  4. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, "Design and scaling of monocentric multiscale imagers," Appl. Opt. 51, 4691-4702 (2012). https://doi.org/10.1364/AO.51.004691
  5. D. J. Brady and N. Hagen, "Multiscale lens design," Opt. Express 17, 10659-10674 (2009). https://doi.org/10.1364/OE.17.010659
  6. K. W. Hodapp, N. Kaiser, H. Aussel, W. Burgett, K. C. Chambers, M. Chun, T. Dombeck, A. Douglas, D. Hafner, J. Heasley, J. Hoblitt, C. Hude, S. Isani, R. Jedicke, D. Jewitt, U. Laux, G. A. Luppino, R. Lupton, M. Maberry, E. Magnier, E. Mannery, D. Monet, J. Morgan, P. Onaka, P. Price, A. Ryan, W. Siegmund, I. Szapudi, J. Tonry, R. Wainscoat, and M. Waterson, "Design of the Pan-STARRS telescopes," Astronomische Nachrichten 325, 636-642 (2004). https://doi.org/10.1002/asna.200410300
  7. W. J. Smith, Modern Optical Engineering (McGraw-Hill Inc., NY, USA, 2001), Chapter 6.
  8. E. Hecht, Optics (Addison Wesley, MA, USA, 2001), Chapter 4-6.
  9. C.-S. Rim, "The design of telecentric lenses and fly-eye lenses by utilizing $f{\theta}$ formula," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 24, 9-16 (2013). https://doi.org/10.3807/KJOP.2013.24.1.009
  10. H.-J. Kwon and C.-S. Rim, "Design of two-group zoom lens system with wide angle of view using global structure function," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 20, 319-327 (2009). https://doi.org/10.3807/KJOP.2009.20.6.319
  11. S. S. Lee, Geometrical Optics (Kyohakyongusa, Seoul, Korea, 1985), Chapter 1-4.
  12. D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, "Microcamera aperture scale in monocentric gigapixel cameras," Appl. Opt. 50, 5824-5833 (2011). https://doi.org/10.1364/AO.50.005824

Cited by

  1. The Study of Gigapixel Camera Technology and the Stunning High-Resolution Gigapixel Image Created by Utilizing a Robotic Panoramic Head and an Image-Stitching Technique vol.26, pp.1, 2015, https://doi.org/10.3807/KJOP.2015.26.1.044
  2. Designing the Optical Structure of a Multiscale Gigapixel Camera vol.27, pp.1, 2016, https://doi.org/10.3807/KJOP.2016.27.1.025