• Title/Summary/Keyword: 레진콘크리트

Search Result 21, Processing Time 0.027 seconds

Effects of Resin Quantity on the Strength Properties of Polyester Resin Concrete (폴리에스터 레진콘크리트에서 수지 사용량에 따른 강도특성)

  • 황광률;소형석;소승영;박홍신;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • Polymer mortars are mainly used as protective coatings in concrete, reinforced concrete, and more rarely, steel, while polymer concretes represent a new type of structural material capable of withstanding highly corrosive environments. The mechanical properties, chemical stability, and some other useful properties are the reasons research, design, and production organizations. However polymer mortars and polymer concretes have been introduced only recently, and many of their properties are still imperfectly known. And, the main technique in producing polymer concrete is to minimize void volume in the aggregate mass so as to reduce the quantity of the relatively impressive polymer necessary for binding the aggregate. In this study, compressive strength and flexural strength of unsaturated polyester resin concrete are related to quantity of resin and solid volume of aggregate. It was founded that the more solid volume of aggregate increase, the less using quantity of resin decrease with out reducing mechnical properties. When solid volume ratio of aggregate is 70.6%, using quantity of resin is minimized to 10wt.%.

  • PDF

The Evaluation of Performance of Drain Pipes manufactured with Resin Concrete (레진 콘크리트로 제작한 하수관의 성능 평가)

  • 서정인;유성원;전성환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.57-62
    • /
    • 2002
  • Resin concrete has better properties than regular cement concrete in making structures such as manholes, pipes, etc. This study is to evaluate the performance of drain pipes made with resin concrete for the development its application. The test results have been checked by JSWAS K-11, because Korea does not have the code for its check-up. They satisfied all the requirements.

  • PDF

Study on the Manufacture of Resin Concrete of Machine Tool Bed with High Damping Capacity (고감쇠 레진 큰크리트 공작기계 베드 제작에 관한 연구)

  • 서정도;방경근;이대길;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.429-433
    • /
    • 1997
  • High-speed and high-precision are trendy at present in the development of machine tools which are required for various fields of industry such as semiconductor, automobde, mold fabricat~on and so on. High damping capacity of the structure is an iniportant factor to ohtain precise products without vibration during manufacturing caused by rapid trarisportatm and rotation of spindle unit Resin concrete have high potential for machine tool bed due to its good damping characteristics. In this study, the statlc and dynamic characteristics of the machine tool bed were analysed. Also, the hybrid machine tool bed, made of steel base and polyester resin concrete material, was manufactured and its good dynamic characteristics were proved experimentally.

  • PDF

Experimental Study on Dynamic Characteristics of Vibration-Controlled Concrete Beam (제진 콘크리트 보의 동적특성에 관한 실험적 연구)

  • 정영수;최우성;이대형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.185-193
    • /
    • 1997
  • 본 연구는 각종 제진재료를 이용하여 진동을 억제할 수 있는 콘크리트를 개발하여 각종 건설공사에서 흔히 발생할 수 있는 진동공해문제를 억제하고자 하며 아울러 폐기물의 재활용차원에서 폐자재를 이용하여 유용한 제진콘크리트를 개발하고자 하는데 그 목적이 있다. 우선, 제진재료를 이용한 압축강도 (200kg/$\textrm{cm}^2$)이상의 콘크리트 배합비를 찾기 위하여 24배치의 예비실험을 수행하였으며, 선정된 적정배합비에 따른 제진재료를 이용한9개의 진동시험체보를 제작하여 보의 구조적 및 재료적 동적특성 즉 1차 공명진동수와 동적 휨강성 및 감쇠비를 측정하여 제진효과를 조사하였다. 그리고 압축강도에 의한 각 시험체의 균열모멘트를 추정하여 재하하중과 균열모멘트비(M/Mcr)에 따른 하중단계별 동적특성값을 살펴보았다. 제진재료로서는 라텍스(Latex), 고무분말(Rubber Powder)그리고 플라스틱 레진( Plastic Resin)등을 사용하였고, 재료적, 구조적 진동감쇠효과를 파악하고자 KS F2437규정과 진동파의 속도법을 사용하였으며, 감쇠비 측정은 Frequency Spectrum 곡선에 대한 Polynomial Curvefitting 방법과 기하학적 해석방법을 이용하여 각각의 결과를 비교.분석하였다.

The Evaluation of Durability and Bond of Resin Concrete (레진 콘크리트의 부착성 및 내구성 평가)

  • Yoo Sung Won;Suh Jeong In;Jeon Sung Hwan;Hwang Sun Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.715-718
    • /
    • 2004
  • The evaluation of durability of resin concrete was examined through various tests, i.e., compressive strength, absorption, abrasion, chemical attack resistance and bond between general and resin concrete. 2 types of concrete were used such as 40 MPa of general concrete and 90 MPa of resin concrete. The characteristics of resin concrete was more improved than that of general concrete, and especially, resin concrete was most effective on compressive strength, the resistance to $H_2SO_4$ solution attack and absorption. However, abrasion. is almost same between general concrete and resin concrete.

  • PDF

Sand-Box Evaluation for Vibration-Attenuation of Concrete Panels with Recycled Materials (재활용재 혼입콘크리트 패널의 진동감쇠성에 대한 사조실험)

  • 정영수;최우성;조성호
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.171-182
    • /
    • 1998
  • Vibration-controlled concrete has been developed by using various concrete mixtures, such as latex, rubber powders, plastic resins and polystyrene(styrofoam). As part of the recycling research of obsolete aged tires and plastic materials, various vibration-reducing mixtures are used for 10 concrete panels having above 200 kg/cm$^2$ in uniaxial compressive strength. Plywood box with sand uniformly saturated by the raining device has been used for the analysis of the impact wave, of which data have been transfered by the FFT technique to comparatively investigate damping ratios of 10 concrete panels.According to wave propagation analysis on vibration-controlled concrete for this research, it can be concluded that Latex concrete has relatively larger damping ratios than those for noncontrolled normal concrete in a similar compressive strength

A study on the Shrinkage Reduction and Strengths of Unsaturated Polyester Mortar (불포화 폴리에스테르 레진 모르타르의 수축저감 및 강도특성에 관한 연구)

  • 최낙운;최길섭;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to evaluated the effects of added expanded polystyrene on the basic properties of UP mortar. Polyester resin mortars are prepared with expanded polystyrene ratio in styrene monomer (EPS/PS), and the ratio of total polystyrene resin to UP resin (PS/UP). And it is tested for viscosity of UP resin added PS resin, slump-flow test, working life, flexural and compressive strengths, and curing shrinkage test. From the test result, Viscosity of resin for polymer mortar increases with increasing PS content. Curing shrinkage of UP mortar is considerably smaller than that of plain UP mortar, nevertheless, reduction in the strengths is not recognized according to adding PS resin. In this study, we can obtain the optimum mix proportions of polymer mortar using PS resin.

  • PDF

Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete (폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구)

  • Yeom, Jihye;Kim, Jeong-Jin;Park, Junhong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.90-94
    • /
    • 2021
  • With the increased interest on quiescent place for residential place, the noise generation from facilities needs to be minimized. One important noise source include sounds from operation of elevators. The elevator operates between floors and generates significantly annoying sounds to the nearby living spaces. It is recognized as the significant contributor inducing noise annoyance to residents. Elevator is supported to the building structure at several locations for movements between floors. In this study, the vibration reduction by use of polymer concrete on the support location was demonstrated. By measuring and comparing the vibration generation when supported on cement and polymer concrete, the noise reduction performance was evaluated. The polymer concrete was made in the form of being inserted into the wall that imitates the hoistway. The impact vibration was induced to the bracket and vibration transfer magnitude was measured. The damping ratio was evaluated through normalization and curve fitting of transient response, and comparison was performed for each resin mixing ratio. By use of polymer concrete, it was possible to reduce the vibration generation in an effect manner without sacrifice on the structural rigidity.

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF

An Experiment of Flexural Behavior for the Damaged Low Reinforced Concrete Beams Rehabilitated with External Tendons (손상된 저보강 RC보의 외부 긴장 보강 후 휨거동 실험)

  • Yoo, Sung Won;Suh, Jeong In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2013
  • Most experiments carried out in the previous studies dealt with the highly reinforced concrete beams (RC beams) in case of rehabilitating with external tendon. However, the reinforcing effect of external tendons cannot be clearly analyzed in this kind of RC beams because the rehabilitating tendon quantity for it is too small. By this reason, this study chose the low RC beams rehabilitated with external tendons. Therefore, in this study, 7 test beams were manufactured and flexural behavior tests were performed to assess the reinforcing effect and to find more proper rehabilitating method by external tendon. The reinforcing effect increased according to the quantity of tendons, and was especially added by repairing cracks with epoxy resin. It was shown that the design equations of AASHTO 1994 and ACI-318 did not show a good agreement with test results. The result of this study will be able to be used effectively in finding the more proper rehabilitating method of the damaged RC beams.