• Title/Summary/Keyword: 레일연마

Search Result 19, Processing Time 0.045 seconds

The Fatigue Life Evaluation of Continuous Welded Rail on a Concrete Track in an Urban Railway (도시철도 콘크리트궤도 장대레일의 피로수명 평가)

  • Kong, Sung-Yong;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • In this study, fatigue tests on existing continuous welded rail (CWR) on a concrete track were carried out. Based on the test results, a S-N curve expressing the remaining life of the CWR at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails had different histories in terms of accumulated passing tonnage, the test data were corrected to average out the accumulated passing tonnage. The remaining service life for the CWR on the concrete track in an urban railway was estimated using the prediction equation for the bending stress of rail developed in the past to estimate rail base bending stress and taking the surface irregularities into consideration. Estimating the remaining service life of the CWR in an urban railway showed that the rail replacement period could be extended over 200MGT. In addition, comparing the concrete track to the ballast track, the fatigue life of rail was analyzed as approximately 300MGT higher than. Therefore, the rail replacement criteria needs to distinguish between the ballast track and the concrete track, and not the criteria needs to be changed as a target for the maintenance, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding.

Fatigue Life Evaluation for Used Rail on Track Types (궤도형식별 사용레일의 피로수명 평가)

  • Kang, Sung Won;Lim, Hyung-Jun;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.649-657
    • /
    • 2017
  • In this study, fatigue testing was carried out for long-term use of rail according to track type. From S-N curves for 50%~0.01% failure probability, the fatigue life of the long-term use rail for each track type was derived using the weight probability analysis technique on the experimental data. Because the rails used in the fatigue test have different cumulative tonnages, the number of repetitions was modified by averaging the cumulative tonnage. In addition, the bending stresses of rail bottoms, considering rail surface irregularities, track support stiffnesses and train speeds, were evaluated using the predicted rail bending stresses derived from existing studies. As a result, for rail fatigue life evaluation, the fatigue life of rail on the ballast track was found to be more than 200 million tons higher than the standard value for rail replacement. Also, the fatigue life of rail on concrete track is more than 300 million tons higher than that on ballast track. The Haibach rule is adaptable for the fatigue life evaluation of rail for stress range under fatigue limit.

Vibration Analysis on Rolling Stock running in Rail Head Surface Irregularity (레일두부 표면요철에 의한 열차주행 시 진동발생에 대한 분석)

  • Lee, Sang-Bae;Lee, Sung-Uk;Woo, Byong-Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.988-991
    • /
    • 2006
  • Rolling Stock running are making Rail Head Surface damage(corrugation, flaking, shelling, etc). It's coming out Rail Head Surface Irregularity. It increases Rolling Stock and structure vibration. Therefore, this paper analyzes the influence of Rail Head Surface Irregularity to railway vibration. And, It introduces the management method of Rail Head Surface and proposes its R&D direction in railway-run organization.

  • PDF

Evaluation on Effectiveness of Rail Grinding by Prediction of Rail Fatigue Life (레일 피로수명 예측에 따른 레일 연마의 효용성 평가)

  • Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.255-261
    • /
    • 2008
  • The importance of maintenance of rail surface defects is increasing according to the KTX operation. That is because during high speed operation of rolling stocks, rail surface defects shorten fatigue life of rail, accelerate track degradation and deteriorate ride comfort. Rail grinding has been applied for effective rail maintenance in Kyeong-Bu HS line. This paper evaluates the effectiveness of rail grinding in term of rail fatigue life. To this end, the stresses of the ground rail are measured under KTX running and the equivalent stress range is calculated by RMC after the frequency analysis done with Rainflow counting method. Also, Pamglen-Miner rule is applied to predict the fatigue life of ground rail. The result of the analysis shows that the fatigue life of ground rail is increased by 15%.

  • PDF

Quality Assurance of Rail grinding and Optimize grinding Strategy (레일 연마의 품질보증과 최적 연마 전략)

  • Lee Hak-Kyu;Lee Jong-Su;Lee Ki-Seung;Cho Sun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.283-289
    • /
    • 2004
  • Rail defects(Corrugation, shelling, etc) are occurred by the Rail with wheel contact stress. Rail grinding is maintaining of optimal rail profile to use special rail grinding machine to remove rail defect. The benefits of rail grinding enforcement, improve track safety, improve track steering and rail life, improve ride comfort and reduce noise, etc. Actually when rail grinding plan apply to field track, we should consider a lot of function before determination, such as grinding method, grinding pass number, removing metal volume, etc. because each track has various characteristics. Therefore it is important that the determination of rail grinding strategy for optimum and economic before enforcement.

  • PDF

Integrated Superstructure Design of Elastic Components to Improve the Track Performance (궤도의 성능향상을 위한 탄성구성요소로 통합된 상부구조 설계)

  • Kang, Bo Soon
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.578-585
    • /
    • 2015
  • Track elastic components can be technically and economically efficient when integrated well into track superstructure of a railway network. In such cases, the elastic rail pad is larger than a 800m radius curve provides smooth rail branching and allows for high-speed operation ($V{\geq}160km/h$). High track resistance causes the tamping intervals to stand out because the constantly increasing share of the sleeper pad further extends the increase of the tamping interval and the long grinding period; the engineering and construction of the small curve radius track provides some measures for reducing the solid sounds. Installation of elastic mats under the ballast can have a good effect, particularly in the context of protection against dust during construction or extensive renovation measures when laying new lines. However, such a process requires special attention and proper installation.

Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway (구름접촉피로시험을 통한 고속철도 레일연마량 분석)

  • Chang, Ki-Sung;Sung, Deok-Yong;Park, Yong-Gul;Choi, Jin-Yu;Lee, Dong-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2115-2124
    • /
    • 2011
  • The rail surface defects which are generated on repeated rolling contact fatigue are getting increased according to high speed, high density, and minimum weight. In addition, Increasing noise and vibration are affected by these also impact load generated as well. Because of this phenomenon, more serious and critical damages were occurred. In fact, in order to control them, the rail grinding were conducted. However, there are not enough researches to make an criteria of generating optimal rail grinding amount in Korea. This study evaluated how depth of hardening on rail surface is formed and suggested optimal rail grinding amount by RCF(rolling contact fatigue) test with generated contact pressure between KTX wheel and UIC60 rail by applying FEM analysis. Therefore, the amount was generated approximately 0.2mm/20MGT to maintain integrity of rail surface by getting rid of depth of hardening on rail according to rail accumulated passing tonnage.

  • PDF

Analysis of Short Grinding Effect on Removing of Surface Irregularities of Rail Welding Joint (레일용접부 요철 제거의 국부연마 효과 분석)

  • Woo, Byoung-Koo;Lee, Syeung-Yeol;Kim, Myung-Soo;Lee, Sung-Uk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.684-691
    • /
    • 2010
  • Rail is one of major track components for train service, it should be provided in the condition of flat and smooth driving aspect. Therefore, it is inevitable that there would be the field welding to integrate on CWR(Continuous Welded Rail) removing rail joint in these days. It is high chance to be some rail surface irregularity due to the limitation on the status of work condition If a high speed train runs on the rail surface irregularity in the welding part, big impact load comes to pass on that, so track irregularity cycle is reduced, therefore track maintenance cost can be increased. this paper has analyzed wheel load variation according to removing the rail surface irregularity using portable grinding machine in the high speed line. The result measured before and after in the field is decreased about 9.26% on the wheel load variation.

  • PDF

Study on the Establishment of Rail Grinding Criteria of High-Speed Railway Lines Considering the KTX Operation Circumstances (KTX 운행현황을 고려한 고속선 레일 연마 기준 정립에 대한 연구)

  • Kim, Man-Cheol;Kang, Tae-Ku
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.377-385
    • /
    • 2007
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were analyzed for metallographic structure and tested for the hardness. By analyzing the test results to the factors affecting the RCF causing the defects of rail surface, the study suggested the rail grinding criteria of the domestic high speed railway lines. As the factors affecting RCF, passing tonnage, running speed and track condition are considered.

  • PDF