• Title/Summary/Keyword: 레일연마주기

Search Result 6, Processing Time 0.026 seconds

Experimental Study for Establishing Rail Grinding Period in the Urban Railway (도시철도 레일연마주기 산정을 위한 시험적 연구)

  • Sung, Deok-Yong;Go, Dong-Chun;Park, Yong-Gul;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.447-454
    • /
    • 2010
  • The defects of rail head induced by fatigue and deterioration are mainly classified by two types ; one occurred on the surface of rail head the another occurred on the inner rail head. This study performed the surface irregularity measurement of rail head according to the passing tonnage in the urban railway. Also, we carried out microscopic structure test, chemical component test and micro-hardness test for the specimen which is the used rail on metro line by accumulated passing tonnage. As a result of this study, for new rail, it should be performed initial grinding in order to remove 0.3mm of de-carbonized layer. The preventive-cyclic grinding for preventing RCF defects is proposed two options : grinding by the whole line and grinding by specified sections.

The Fatigue Life Evaluation of Aged Continuous Welded Rail on the Urban Railway (도시철도 장기 사용레일의 피로수명 평가)

  • Kong, Sun-Young;Sung, Deok-Yong;Park, Yong-Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.821-831
    • /
    • 2013
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). In this study, we carried out fatigue tests on existing laid rails. Based on the test results, an S-N curve expressing the remaining life of laid rails at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails used for testing had different histories in terms of accumulated tonnage, the test data were corrected to average out the accumulated tonnage. We estimated the remaining service lives for laid rails on the urban railway using equations developed in the past to estimate rail base bending stress and that surface irregularities into consideration. Therefore, estimating the remaining service life of laid rails showed that the rail replacement period could be extended over 200 MGT, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding. Also, the fatigue test results under fatigue limit, Haibach's rule appling half slope of S-N curve under the fatigue limit was considered more reasonable than modified Miner's rule for estimating rail fatigue life.

Bending Fatigue Life Assessment of Aged CWR using the Field Test (현장측정을 통한 노후레일의 휨 피로수명 평가)

  • Park, Yong-Gul;Sung, Deok-Yong;Park, Hong-Kee;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.317-325
    • /
    • 2008
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). This study evaluated correlation between conditions of track and load capacity of rail by analysing the dynamic response of track while the metro train is running. Also, it was converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then accumulated fatigue damage ratio and remaining service life of laid rail were calculated so as the apply the equivalence of stress to S-N curve of a new welded rail. Finally, this study suggests a revision of the periodic replacements criterion of CWR, which was based on accumulated passing tonnage, classified by the types and conditions of track system.

The Fatigue Life Evaluation of Continuous Welded Rail on a Concrete Track in an Urban Railway (도시철도 콘크리트궤도 장대레일의 피로수명 평가)

  • Kong, Sung-Yong;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • In this study, fatigue tests on existing continuous welded rail (CWR) on a concrete track were carried out. Based on the test results, a S-N curve expressing the remaining life of the CWR at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails had different histories in terms of accumulated passing tonnage, the test data were corrected to average out the accumulated passing tonnage. The remaining service life for the CWR on the concrete track in an urban railway was estimated using the prediction equation for the bending stress of rail developed in the past to estimate rail base bending stress and taking the surface irregularities into consideration. Estimating the remaining service life of the CWR in an urban railway showed that the rail replacement period could be extended over 200MGT. In addition, comparing the concrete track to the ballast track, the fatigue life of rail was analyzed as approximately 300MGT higher than. Therefore, the rail replacement criteria needs to distinguish between the ballast track and the concrete track, and not the criteria needs to be changed as a target for the maintenance, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding.

Fatigue Life Evaluation for Used Rail on Track Types (궤도형식별 사용레일의 피로수명 평가)

  • Kang, Sung Won;Lim, Hyung-Jun;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.649-657
    • /
    • 2017
  • In this study, fatigue testing was carried out for long-term use of rail according to track type. From S-N curves for 50%~0.01% failure probability, the fatigue life of the long-term use rail for each track type was derived using the weight probability analysis technique on the experimental data. Because the rails used in the fatigue test have different cumulative tonnages, the number of repetitions was modified by averaging the cumulative tonnage. In addition, the bending stresses of rail bottoms, considering rail surface irregularities, track support stiffnesses and train speeds, were evaluated using the predicted rail bending stresses derived from existing studies. As a result, for rail fatigue life evaluation, the fatigue life of rail on the ballast track was found to be more than 200 million tons higher than the standard value for rail replacement. Also, the fatigue life of rail on concrete track is more than 300 million tons higher than that on ballast track. The Haibach rule is adaptable for the fatigue life evaluation of rail for stress range under fatigue limit.

Integrated Superstructure Design of Elastic Components to Improve the Track Performance (궤도의 성능향상을 위한 탄성구성요소로 통합된 상부구조 설계)

  • Kang, Bo Soon
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.578-585
    • /
    • 2015
  • Track elastic components can be technically and economically efficient when integrated well into track superstructure of a railway network. In such cases, the elastic rail pad is larger than a 800m radius curve provides smooth rail branching and allows for high-speed operation ($V{\geq}160km/h$). High track resistance causes the tamping intervals to stand out because the constantly increasing share of the sleeper pad further extends the increase of the tamping interval and the long grinding period; the engineering and construction of the small curve radius track provides some measures for reducing the solid sounds. Installation of elastic mats under the ballast can have a good effect, particularly in the context of protection against dust during construction or extensive renovation measures when laying new lines. However, such a process requires special attention and proper installation.