• Title/Summary/Keyword: 레이저 패터닝

Search Result 96, Processing Time 0.032 seconds

Laser-Direct Patterning for Plasma Display Panel (플라즈마 디스플레이 패널을 위한 레이저 직접 패터닝)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.99-102
    • /
    • 1999
  • A mixture which was made from organic gel, glass powder and ceramic powder was masklessly etched for fabrication of barrier rib of PDP(Plasma Display Panel) by focused Ar$^{+}$ laser( λ =514 nm) and Nd:YAG(λ =532, 266 nm) laser irradiation at the atmosphere. The depth of the etched grooves increases with increasing a laser fluence and decreasing a scan speed. Using second harmonic of Nd:YAG laser, the threshold laser fluence was 6.5 mJ/$\textrm{cm}^2$ for the sample of PDP barrier rib softened at 12$0^{\circ}C$. The thickness of 130 ${\mu}{\textrm}{m}$ of the sample on the glass was clearly removed without any damage on the glass substrate by fluence of 19.5 J/$\textrm{cm}^2$....

  • PDF

Simulation of Laser Micro Patterning Process Using FEM (유한요소법을 이용한 레이저 미세 패터닝 공정 해석)

  • Lee J. H.;Kim B. H.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.54-58
    • /
    • 2005
  • Femtosecond laser is the latest generation pulsed laser delivering shortest pulses. Any solid materials can be machined by it. Femtosecond laser micromachining allows highest precision and minimal heat influence within the workpiece. But due to the complex physical phenomena between the laser beam and the workpiece materials, it is very difficult to determine the optimal process conditions in the femtosecond laser micromachining. In this study, a method to simulate the femtosecond laser micromachining process was proposed. And femtosecond laser micro patterning processes of chromium thin film are simulated by the proposed method using a commercial FE code, LS-Dyna. Simulation results were compared with those of experiments.

  • PDF

Laser-Direct Patterning of Nanostructured Metal Thin Films (나노구조 금속 박막의 레이저 직접 패터닝에 관한 연구)

  • Shin, Hyunkwon;Lee, Hyeongjae;Yoo, Hyeonggeun;Lim, Ki-Soo;Lee, Myeongkyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • We here describe the laser-direct patterning of nanostructured metal thin films. This method involves light-matter interaction in which a pulsed laser beam impinging on the film generates a thermoelastic force that plays a role to detach the film from the substrate or underlying layers. A moderate cohesion of the nanostructured film enables localized desorption of the material upon irradiation by a spatiallymodulated laser beam, giving good fidelity with the transfered pattern. This photoresist-free process provides a simple high-resolution scheme for patterning metal thin films.

The UV Laser Ablation of Cr film on Glass Substrate (UV레이저를 이용한 Cr 박막의 어블레이션)

  • Yoon, Kyung-Ku;Lee, Seong-Kuk;Kim, Jae-Gu;Choi, Doo-Sun;Whang, Kyung-Hyun;Jung, Jae-Kyoung;Jang, Won-Suk;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.134-139
    • /
    • 2000
  • In order to understand the removal mechanism and seek the optimal conditions. KrF excimer laser ablation of Cr films on glass substrates is investigated. The surface morphology of the laser-irradiated spot is examined by SEM. The measured single-shot ablation rate is found to be about two times the result of numerical analysis based on a surface vaporization model and heat conduction theory. Surface morphology examination indicates that the Cr film is removed by the sequence of melting-surface vaporization-,melt expulsion by plasma recoil and that the outmost ripple of the diffraction pattern gives a strong effect on the morphology of molten Cr during the melting and vaporization processes. To seek the optimal process parameters for micro patterning morphological investigation is carried out experimentally on samples having different chromium film thicknesses. Optimal processing conditions are determined to enhance the accuracy and quality of thin film removal for micro patterning.

  • PDF

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

A Study of the Yellowing Phenomenon in the Laser Patterning of Silver Nanowire (은 나노와이어 레이저 패터닝 시 발생하는 황변 현상에 대한 연구)

  • Hwang, June Sik;Park, Jong Eun;Yang, Min Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.94-97
    • /
    • 2015
  • In this study, we introduce a yellowing phenomenon in silver nanowire laser patterning and attempt to understand the cause of this phenomenon. Silver nanowire is a promising alternative to indium tin oxide as a transparent electrode owing to its flexibility. Additionally, silver nanowire can be easily patterned by laser ablation, which is free of dangerous chemicals. However, a yellowish color change reducing visibility is observed on the patterned area of the silver nanowires, and this yellowing phenomenon prevents the use of silver nanowire as a transparent electrode material. We concluded that resolidified debris of melted and evaporated silver nanowires after laser ablation causes the color change of the electrode. Further research is needed to determine a means of mitigating this yellowing phenomenon.

효율적인 무반사 특성을 갖는 주기적인 실리콘 계층 나노구조 제작 연구

  • Lee, Su-Hyeon;Im, Jeong-U;Gwan, Sang-U;Kim, Jeong-Tae;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.312.2-312.2
    • /
    • 2014
  • 실리콘은 광센서, 태양전지, 발광다이오드 등 광소자 응용 분야에서 널리 사용되고 있는 물질이다. 그러나 실리콘의 높은 굴절율(n~3.5)은 표면에서 약 30% 이상의 Fresnel 반사를 발생시켜 소자의 효율을 감소시키는 원인이 된다. 따라서, 반사손실을 줄이기 위해서는 실리콘 표면에 효율적인 무반사 코팅을 필요로 한다. 기존의 단일 혹은 다중 박막을 이용한 무반사 코팅 기술은 물질간 열팽창계수의 불일치, 접착력 문제, 박막 두께 조절 및 적합한 굴절율을 갖는 물질 선택 어려움 등의 단점을 지니고 있다. 최근, 이러한 무반사 코팅 기술의 대안으로 곤충 눈 구조를 모방한 나노크기의 서브파장 격자구조 (subwavelength gratings, SWGs)에 대한 연구가 활발히 이루어지고 있다. 이러한 SWGs 구조는 공기와 반도체 표면 사이에 점진적, 선형적으로 변화하는 유효굴절율을 갖기 때문에, 광대역 파장영역뿐만 아니라 다양한 각도에서 입사하는 빛에 대해서도 효과적으로 Fresnel 표면 반사를 낮출 수 있다. 본 연구에서는 실리콘 기판 표면 위에 효율적인 무반사 특성을 갖는 계층적 SWGs 나노구조를 제작하기 위해, 레이저간섭리소그라피 및 열적응집금속 입자를 이용한 식각 마스크 패터닝 방법과 유도결합플라즈마 식각 공정을 이용하였다. 제작된 무반사 실리콘 SWGs 나노구조의 표면 및 식각 프로파일은 전자주사현미경으로 관찰하였고, 표면 접촉각 측정 장비를 이용하여 샘플 표면의 젖음성을 확인하였다. 제작된 샘플의 광학적 특성을 조사하기 위해 UV-vis-NIR 스펙트로미터와 엘립소미터 측정 시스템들을 이용하였다.

  • PDF

사파이어 기판 위에 성장한 N-tyep ZnO Ohmic 접합 연구

  • Lee, Gyeong-Su;Seo, Ju-Yeong;Song, Hu-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.96-96
    • /
    • 2011
  • ZnO는 실온에서 3.37 eV의 큰 밴드갭 에너지와 60 meV의 높은 exciton binding energy를 가지고 있어 광소자를 만드는데 큰 관심을 얻고 있다. 또한 최근에는 ZnO를 기반으로 한 동종접합 전광소자를 만드는데 성공하였다. 그러나 소자의 성능을 높이기 위해 여러 가지 개선할 사항이 있다. 그 중에 하나는 캐리어를 잘 주입 시키기 위한 금속-반도체 접합을 구현하는 것이다. 이러한 문제를 개선하기 위해서는 ZnO 기반으로 한 낮은 비저항을 가진 소자가 필요하다. 일반적으로 n-type ZnO Ohmic 접합에서 쓰이는 금속은 Ti/Au, Ta/Au, Al/Au 등이 있다. 실험방법은 c-plane 사파이어 기판 위에 펄스 레이저 증착 방법으로 3시간 동안 $500^{\circ}C$ 환경에서 ZnO 박막을 성장하고, 표면을 고르게 하기 위해 $1000^{\circ}C$에서 1분 동안 열처리를 진행하였다. 샘플 위에 photo-resist 코팅을 한 다음 transfer length method(TLM)를 이용하기 위해 포토리소그래피 장비를 통하여 샘플을 노광하였다. 그 위에 Ti/Au (30 nm/80 nm)를 E-beam/thermal evaporation으로 증착 하였다. 이는 일반적인 반도체 공정과 Lift-off방식을 이용하여 패터닝 하였다. 샘플을 열처리하는 것은 금속과 반도체의 접촉 접착과 전기적인 성질을 개선하고 응력과 계면 결함을 감소시키기 때문에 샘플을 100, 200, 300, 400, $500^{\circ}C$에서 각각 열처리하였다. 저항을 구하기 위해 각각 열처리된 샘플과 as-deposited의 전류, 전압 특성을 측정하고, 이러한 실험 방법으로 n-type ZnO의 Ohmic 접합을 구현하는 것이 목표이다.

  • PDF

Tailoring Surface Properties of Polyimides by Laser Direct Patterning (레이저 직접 패터닝에 의한 폴리이미드의 표면 특성 제어)

  • Yun Chan Hwang;Jeong Min Sohn;Jae Hui Park;Ki-Ho Nam
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, a comprehensive investigation was conducted on the morphological and property changes of laser-induced nanocarbon (LINC) as a function of laser process parameters. LINC was formed on the surfaces of polyimide films with different backbone structures under various process conditions, including laser power, scan speed, and resolution. Three different forms of LINC electrodes (i.e., continuous 3D porous graphene, wooly nanocarbon fibers, line cut) were formed depending on the laser power and scan speed. Furthermore, heteroatom doping induced from the chemical structure of the polyimide during laser patterning was found to be effective in modifying the electrical properties of LINC electrodes. The LINC surfaces exhibited different microstructures depending on the laser beam resolution under constant laser power and scan speed, allowing for controllable surface wettability. The correlation between the chemical structure of the polymer substrate, laser process parameters, and carbonized surface properties in this study is expected to be utilized as fundamental understanding for the manufacturing of next-generation carbon-based electronic devices.

A study on the fabrication of heatable glass using conductive metal thin film on Low-e glass (로이유리의 전도성 금속박막을 이용한 발열유리 제작에 관한 연구)

  • Oh, Chaegon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper proposes a method for fabricating heatable glass using the conduction characteristics of metal thin films deposited on the surface of Low-e(Low emissivity) glass. The heating value of Low-e glass depends on the Joule heat caused by Low-e glass sheet resistance. Hence, its prediction and design are possible by measuring the sheet resistance of the material. In this study, silver electrodes were placed at 50 mm intervals on a soft Low-e glass sample with a low emissivity layer of 11 nm. This study measured the sheet resistance using a 4-point probe, predicted the power consumption and heating value of the Low-e glass, and confirmed the heating performance through fabrication and experience. There are two conventional methods for manufacturing heatable glass. One is a method of inserting nichrome heating wire into normal glass, and the other is a method of depositing a conductive transparent thin film on normal glass. The method of inserting nichrome heating wire is excellent in terms of the heating performance, but it damages the transparency of the glass. The method for depositing a conductive transparent thin film is good in terms of transparency, but its practicality is low because of its complicated process. This paper proposes a method for manufacturing heatable glass with the desired heating performance using Low-e glass, which is used mainly to improve the insulation performance of a building. That is by emitting a laser beam to the conductive metal film coated on the entire surface of the Low-e glass. The proposed method is superior in terms of transparency to the conventional method of inserting nichrome heating wire, and the manufacturing process is simpler than the method of depositing a conductive transparent thin film. In addition, the heat characteristics were compared according to the patterning of the surface thin film of the Low-e glass by an emitting laser and the laser output conditions suitable for Low-e glass.