• Title/Summary/Keyword: 레이저 전력 전송

Search Result 14, Processing Time 0.017 seconds

Study on Optical Feedback in Optical Fiber Laser (광섬유 레이저에서의 광궤환에 대한 연구)

  • Choi, Kyoo-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.985-990
    • /
    • 2007
  • The method of enhancing visibility in optical fiber sensor was investigated by improving coherence length of light source. The optical feedback technique is used to enhance coherence length in fiber laser which generates laser in near infrared wavelength region and utilizes low loss characteristics of optical communication grade fiber. In this paper, the effect to coherence length by short and long optical feedback paths are investigated by using Mach-Zehnder interferometer technique. The effect to coherence length by changing optical feedback power and optical modulation are investigated. The spectral drift was calculated by measuring the degree of phase perturbation in unbalanced Mach-Zehnder interferometer having loom path difference. The short optical feedback path was effective to reduce spectral drift to 450kHz/sec and the long optical feedback path in combination with short optical feedback path was found to further reduce spectral drift to 50kHz/sec.

Laser Power Beaming Based Wireless Power Transmission System for Multiple Charging of Long-distance Located Electric Vehicle (원거리 전기 자동차의 다중 충전을 위한 레이저 파워 빔 기반의 무선 전력 전송 시스템)

  • Eom, Jeongsook;Kim, Gunzung;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.379-392
    • /
    • 2016
  • This paper presents the design and simulation of a laser power beaming (LPB) system for an electric vehicle that establishes an optimal power transmission path based on the received signal strength. The LPB system is possible to transfer power from multiple transmitters to a single receiver according to the characteristics of the laser and the solar panel. When the laser beams of multiple transmitters aim at a solar panel at the same time, the received power is the sum of all energy at a solar panel. Our proposed LPB system consists of multiple transmitters and multiple receivers. The transmitter sends its power characteristics as optically coded pulses with a class 1 laser beam and powers as a high-intensity laser beam. By using the attenuated power level, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters. Throughout the simulation, we verified the possibility that different LPB receivers were achieved their required power by the optimal allocation of the transmitter among the various transmitters.

The Improved Power Supply for APD and Efficiently Designed Cylindric Micro-lens for a Wireless Optical Transmission System (무선 광 전송용 APD 전력 공급기와 원통형 레이저형상 보정용 마이크로 렌즈 기술)

  • KIM, MAN HO
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.654-659
    • /
    • 2005
  • An improved power supply for APD(Avalanche Photo Diode) with a received optical power monitoring circuit allows the received optical power increase temporary without of the degradation of the electrical signal. For the cost reduction and simple fabrication, an improved power supply has been proposed that it was designed for driving a APD as a receiving device of a wireless optical transmission system. It was demonstrated that it was possible to improve a dynamic range by compensating the temperature coefficient of the APD up to 1.0 V/$^{\circ}C$ through the power supply. Also, for an efficient transmission at the receiver end, a simple structure of a single cylindrical micro-lens configuration was used in conjunction with the laser diode to partially compensate a laser beam ellipticity. For this purpose, an astigmatism introduced by the micro-lens is utilized for the additional compensation of the beam ellipticity at the receiver end. In this paper, it is demonstrated that an efficient beam shaping is realized by using the proposed configuration consisting of the single lens attached to the laser diode.

The Study of the Optical CT Temperature Characteristic Using Faraday Effects (Faraday효과를 이용한 광CT의 온도특성에 관한 연구)

  • Jeon, Jeo-Il;Heo, Soon-Young;Park, Won-Zoo;Lee, Kwang-Sik;Kim, Jung-Bae;Kim, Min-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.136-142
    • /
    • 2005
  • In this paper, we wrote about the basic experimentation of Optical CT's temperature characteristic to measure high-current in a super-high-voltage electric power equipment which is using Faraday effect. We used the 1310[nm] Laser Diode as the light source and PIN Photodiode as receiver. For the transmission line of light, we used 30[m] single mode fiber which could maintain the state of polarization in the optical fiber. For the experiment, the temperature transformation device make by aluminium. the The range of current was from 400[A] and 1300[A] and the range of temperature was from $-40[^{\circ}C]\;to\;50[^{\circ}C]$. In a same experimental condition, magnitude increased input current increase follow by increasing proportion of input current.