• Title/Summary/Keyword: 레이저 애블레이션

Search Result 8, Processing Time 0.029 seconds

Direct UV laser projection ablation to engrave 6㎛-wide patterns in a buildup film (빌드업 필름의 선폭 6㎛급 패턴 가공을 위한 직접식 UV 레이저 프로젝션 애블레이션)

  • Sohn, Hyonkee;Park, Jong-Sig;Jeong, Jeong-Su;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.17 no.3
    • /
    • pp.19-23
    • /
    • 2014
  • To directly engrave circuit-line patterns as wide as $6{\mu}m$ in a buildup film to be used as an IC substrate, we applied a projection ablation technique in which an 8 inch dielectric ($ZrO_2/SiO_2$) mask, a DPSS 355nm laser instead of an excimer laser, a ${\pi}$-shaper and a galvo scanner are used. With the ${\pi}$-shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam. The galvo scanner before the $f-{\theta}$ lens moves the flat-top beam ($115{\mu}m{\times}105{\mu}m$) across the 8 inch dielectric mask whose patterned area is $120mm{\times}120mm$. Based on the results of the previous research by the authors, the projection ratio was set at 3:1. Experiments showed that the average width and depth of the engraved patterns are $5.41{\mu}m$ and $7.30{\mu}m$, respectively.

  • PDF

Effect of a Laser Ablation on High Voltage Discharge Plasma Area for Carbon Nitride Film Deposition (고전압 방전 플라즈마에 의한 질화탄소 박막 증착 시 플라즈마 영역에 가한 레이저 애블레이션의 효과)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.551-557
    • /
    • 2002
  • Carbon nitride films have been deposited on Si(100) substrate by a high voltage discharge plasma combined with laser ablation in a nitrogen atmosphere. The films were grown both with the without the presence of an assisting focused Nd:YAG laser ablation. The laser ablation of the graphite target leads to vapor plume plasma expending into th ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy and Auger electron spectroscopy were used to identify the binding structure and the content of the nitrogen species in the deposited films. The nitrogen content of the films was found to increase drastically with an increase of nitrogen pressure. The surface morphology of the films was studied using a scanning electron microscopy. Data of infrared spectroscopy and x-ray photoelectron spectroscopy indicate the existence of carbon-nitrogen bonds in the films. The x-ray diffraction measurements have also been taken to characterize the crystal properties of the obtained films.

Effect of a Laser Ablation for Carbon Nitride Film Deposition (고전압 방전 플라즈마에 의한 질화탄소 박막 층착 시 레이저 애블레이션 효과)

  • 김종일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.240-243
    • /
    • 2002
  • Carbon nitride films have been deposited on Si(100) substrate by a high voltage discharge plasma combined with laser ablation in a nitrogen atmosphere. The films were grown both with and without the Presence of an assisting focused Nd:YAG laser ablation. The laser ablation of the graphite target leads to vapor Plume plasma expending into the ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy and Auger electron spectroscopy were used to identify the binding structure and the content of the nitrogen species in the deposited films. The surface morphology of the films was studied using a scanning electron microscopy Data of infrared spectroscopy and x-ray photoelectron spectroscopy indicate the existence of carbon-nitrogen bonds in the films. The x-ray diffraction measurements have also been taken to characterize the crystal properties of the obtain films.

  • PDF

Formation of dielectric carbon nitride thin films using a pulsed laser ablation combined with high voltage discharge plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • Kim, Jong-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.208-211
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in nitrogen gas atmosphere. We can be calculated dielectric constant, ${\varepsilon}_s$, with a capacitance Sobering bridge method. We reported to investigate the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were found to increase drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and $C{\equiv}N$ bonds. The carbon nitride thin films were observed crystalline phase, as confirmed by x-ray diffraction data.

  • PDF

Formation of Dielectric Carbon Nitride Thin Films using a Pulsed Laser Ablation Combined with High Voltage Discharge Plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.641-646
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) substrate using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in the presence of a N$_2$ reactive gas. We calculated dielectric constant, $\varepsilon$$\_$s/, with a capacitance Schering bridge method. We investigated the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were increased drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and C=N bonds. The carbon nitride thin films were observed crystalline phase confirmed by x-ray diffraction data.

Study on elemental analysis of metal and ceramic samples by using laser ablation ion trap mass spectrometry(LAITMS) (레이저 이온화 이온트랩 질량분석법을 이용한 금속 및 세라믹 시료의 원소분석에 관한 연구)

  • Song, Kyuseok;Park, Hyunkook;Cha, Hyungki;Lee, Sang Chun
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-14
    • /
    • 2002
  • Laser ablation ion trap mass spectrometry (LAITMS) was developed for the analysis of metal and ceramic samples. For this study, XeCl excimer laser (308 nm) was used for ablating the samples and ITMS was used as a detector. Samples were introduced from outside of a ring electrode and this way of sample introduction was very effective for solid samples when laser ablation was employed. Helium gas was used as a buffer gas, and its effect on sensitivity and some parameters (buffer gas pressure, ion storage time, and cut-off RF voltage) were studied. The optimized conditions were $1{\times}10^{-4}$ Torr of buffer gas pressure, 100 ms of ion storage time and $1150V_{p-p}$ of cut-off RF voltage. From that results, copper (Cu) and molybdenum (Mo) metals were tested with LAITMS and the mass spectra of these pure metals were compared with the natural abundance of isotope ratio. We also examined ceramic samples ($Al_2O_3$, $ZrO_2$) and represented the result of elemental analysis.

Development of Metal Filter with Nanoporous Structure by Adhesion of Metal Nanoparticles Sintered onto a Micor-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 고착에 의한 나노기공체 금속 필터 개발)

  • Lee, Dong Geun;Park, Seok Joo;Park, Young Ok;Ryu, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.397-401
    • /
    • 2008
  • The nanoparticle-agglomerates are synthesized by laser ablation, which have the morphology of dendrite structure. The filtration performance of a conventional micron-fibrous metal filter was improved by adhering nanoparticle-agglomerates onto the filter surface. The Sintered-Nanoparticle-Agglomerates-adhered Filter (SNAF) adhered with nanostructured material was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto the micron-fibrous metal filter. As the sintering temperature increases, the pressure drop of the filter increases a little but the filtration efficiency increases remarkably. This is due to increase of surface area of nanoparticle-agglomerates adhered onto the micron-fibrous metal filter.