• Title/Summary/Keyword: 레이저 그래픽

Search Result 16, Processing Time 0.017 seconds

Development of LiDAR and SBES data Merging Program for Calculation of Water Volume (수량계산을 위한 LiDAR와 SBES데이터 통합프로그램 개발에 관한 연구)

  • Oh Yoon-Seuk;Bae Sang-Keun;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.2 s.33
    • /
    • pp.157-166
    • /
    • 2005
  • LiDAR(Light Detection And Ranging) can make terrain model where above the ground and the mixed data between SBES(Single Beam Echo Sounder) and SSS(Side Scan Sonar) can make terrain model where bottom of water. So this research suggest that how to merge data which are got ken different devices and we developed the software which can display 2D/3D graphic and water volume calculation. And we compared accuracy between the commercial software'Surfer'and LiDAR and SBES data Merging Program.

  • PDF

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

The Weldability Estimation for the Purpose of Real-Time Inspection and Control (실시간 검사 및 제어를 목적으로 한 용접성 평가)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.605-610
    • /
    • 2008
  • Through welding fabrication, user can feel unsatisfaction of surface quality because of welded defects, Generally speaking, these are called weld defects. For checking these defects effectively without time loss effectively, weldability estimation system setup is an urgent thing for detecting whole specimen quality. In this study, by laser vision camera, catching a rawdata on welded specimen profiles, treating vision processing with these data, qualitative defects are estimated from getting these information at first. At the same time, for detecting quantitative defects, whole specimen weldability estimation is pursued by multifeature pattern recognition, which is a kind of fuzzy pattern recognition. For user friendly, by weldability estimation results are shown each profiles, final reports and visual graphics method, user can easily determined weldability. By applying these system to welding fabrication, these technologies are contribution to on-line weldability estimation.

The electro-optical characteristics of PDLC (PDLC의 전기광학적 특성)

  • Kim, Won-Jae;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.432-436
    • /
    • 1998
  • Recently, the PDLC(Polymer Dispersed Liquid Crystal) is being developed lively to make a large display device using a liquid crystal. Because of low light loss, high brightness, and simple fabrication process, it is made easily to large display device, In this study, the response time and light transmittance by the applied voltage is measured to analyze the electro-optical characteristics of PDLC. The He-Ne laser is applied to the PDLC cell, the light transmittance is measured using the photodiode and the result is analyzed and displayed graphically by the digital oscilloscope. The result of comparison between the PDLC and the present LCD is used to study the potential as a display device.

  • PDF

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System (열자극발광 및 광자극발광 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.