• Title/Summary/Keyword: 레이저 공정

Search Result 627, Processing Time 0.026 seconds

레이저 절단 공정에서의 열전달

  • 이준식;김도훈
    • Journal of the KSME
    • /
    • v.32 no.8
    • /
    • pp.691-705
    • /
    • 1992
  • 레이저가공 분야는 앞으로도 계속적인 관심과 함께 개발에 대한 연구가 지속될 것으로 전망된다. 실제 재료가공에 있어서의 시행착오를 줄이기 위해서는 이에 대한 열전달해석이 뒷받침이 되어야 하며 2차원해석, 산화반응열의 정확한 계산, 레이저 흡수율의 모델링 등이 앞으로 연구되어야 할 과제라 생각된다.

  • PDF

A study of infrared surface temperature measurement on $CO_2$ laser welding(2) (적외선센서를 이용한 $CO_2$ 레이저 용접부 표면온도 계측에 관한 연구(2))

  • 이목영;김재웅
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.106-108
    • /
    • 2004
  • 레이저용접은 대부분의 소재를 고품질로 접합하는 것이 가능하지만, 단위 용접길이당 비용이 매우 높은 고비용 용접공정이다. 따라서 레이저용접에서는 고비용의 단점을 상쇄시킬 수 있을 정도의 우수한 용접품질이 유지되어야 하므로 용접부 품질의 관리가 무엇보다도 중요하다. (중략)

  • PDF

Temperature Controlled Laser Hardening with High Power Diode Laser (고출력다이오드레이저를 이용한 금형의 레이저열처리 기술)

  • Hoffmann, Peter;Dierken, Roland;Endress, Thomas
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.203-208
    • /
    • 2007
  • 고출력 다이오드레이저(High Power Diode Laser, HPDL)는 독일을 중심으로 한 유럽내의 여러 국가에서 적용분야를 점차 높여가고 있으며, 금속소재에 있어서의 높은 흡수율 및 발진장치의 높은 에너지 변환효율이 중요한 요인이라고 할 수 있다. 레이저소스로부터 출력되는 사각형 또는 라인형의 레이저-빔은 다이오드레이저를 이용한 금속의 열처리분야에 매우 적합하며, 이미 Body-in-White 차체(Car Body) 양산라인의 브레이징 공정에는 수 년 전부터 실제 적용되어왔다. 또한, 다양한 빔 형상, 균일한 에너지 밀도, 낮은 운전비용, 간단한 유지보수, 좁은 설치공간, 손쉽게 이동이 가능한 구조, 광케이블을 이용한 레이저-빔의 전송 등 여러 장점으로 인하여 보다 유연하고 효과적인 생산환경을 구축할 수 있다는 것 또한 다이오드레이저의 응용분야를 확대하는 요인이 되었다.

특집 : 레이저 기반 초정밀 초고속 가공시스템 - PCB pattern 미세화에 따른 UV laser driller의 개발

  • Park, Hong-Jin;Seo, Jong-Hyeon
    • 기계와재료
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • 최근 휴대폰 등 모방일 전자기기 산업에서 차세대 고부가 PCB(MLB, HDI, FPC, 등) 및 고기능 PCB(COF, MOF, SOF)의 급속한 적용 확대로 직경$20{\mu}m$급의 비아홀(viahole) 및 interconnection 홀 가공을 위한 초정밀/초고속 레이저 드릴링 공정 및 장비기술 개발에 대한 시장의 요구가 급증하고 있다. 이에 반해 기존의 CO2 레이저 드릴링은 기술적 한계에 도달하여 시장의 요구에 대응이 불가하며, 선진업체에서는 최근 UV 레이저 드릴링 장비에 대한 시장 점유율을 높여가고 있다. 특히 국내시장은 미국의 ESI사가 독점하고 있어 기술개발 투자를 통한 국산화가 절실한 상황이다. 이에 당사에서는 초고속/초정밀 UV laser 시스템을 이용한 FPC iva hole drilling을 연구과제로 개발을 진행하고 있으며 국산화를 넘어서 세계시장점유를 목표로 공정장비개발을 진행중이다.

  • PDF

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

Electroless Cu plating solution for laser direct structuring(LDS ) (레이저 직접 성형 입체회로부품용 무전해 동 도금액)

  • Kim, Dong-Hyeon;Lee, Seong-Jun;Lee, Seong-Mo;Yu, Myeong-Jae;Hwang, Sun-Mi;Jeong, Ho-Cheol;Lee, Jin-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.34-34
    • /
    • 2018
  • 레이저를 통한 플라스틱 일체형 회로형성 기술은 레이저 직접 성형 (Laser Direct Structuring, LDS) 기술과 도금기술을 이용하여 기판 표면에 전도성 회로 패턴을 형성하고 소자를 집적하여 부품을 제작하는 기술이다. 종래에는 PCB 기반의 평면기판을 기반으로 하여 제작된 소자와 부품이 전자제품의 주를 이루었으나, 최근 소자의 집적화와 제품 디자인의 유연화(flexible)로 굽힘(bendable) 형태의 스마트 시계와 같은 웨어러블(wearable) 전자 제품이 출시되었으며, 레이저를 통한 플라스틱 일체형 회로형성 기술은 미래 사회의 주를 이룰 웨어러블 형태의 제품의 상용화를 가능하게 할 뿐만 아니라 회로 집적이 가능하여 제품 혁신을 주도할 기술로 주목 받고 있다. 본 연구에서는 LDS 부품의 미세 회로 구현을 위한 공정 기술 개발에 있어서 고생산성 무전해 동도금액 및 부품 실장을 위한 표면처리 기술 개발에 대한 결과를 보고한다. 미세 회로 패터닝 기술의 상용화를 위해서는 도금액의 안정성뿐만 아니라 고속 공정기술이 필요하다, 현재 국내 무전해 동 도금의 석출 속도는 시간 당 $4{\sim}5{\mu}m$ 내외이기 때문에, 생산성을 향상시키기 위해서는 시간 당 $10{\mu}m$ 정도의 고속 무전해 동 도금 공정 개발 필요하다.

  • PDF