• Title/Summary/Keyword: 레이저 거리 측정

Search Result 225, Processing Time 0.027 seconds

Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging (1m급 인공위성 레이저추적 시스템용 고속·고정밀 추적마운트 개발 및 예비 성능분석)

  • Choi, Man-Soo;Lim, Hyung-Chul;Lee, Sang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.1006-1015
    • /
    • 2016
  • This paper presents preliminary design and performance analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging(SLR) which is development by Korea Astronomy and Space science Institute(KASI). SLR is considered to be the most accurate technique currently available for the precise orbit determination of Earth satellites. The SLR technique measures the time of flight between pulses emitted from laser transmitter and pulses returned from satellites with laser retro-reflector array. It provides millimeter level precision of range measurements between SLR stations and satellites. A fast and high precision Tracking Mount for SLR which is proposed in this research should be capable of day and nighttime laser tracking about the satellites with laser reflectors from 200 km to 36,000 km altitude(geosynchronous orbit). In order to meet this requirement, we performed mechanical design and structural analysis for Tracking Mount. Also we designed the motion control system and conducted pre-performance analysis to obtain good performance results for a fast and high precision Tracking Mount.

Evaluation of Nd:YAG Laser Beam Quality in Unstable Rosonators (불안전형 공진기를 갖는 Nd:YAG 레이저에서의 beam quality 평가)

  • 김광석;김정묵;김철중;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • First, the beam waist size of TE$M_{00}$ Nd:YAG laser mode with Positive Branch Unstable Resonator was calculated. and then, the output power, fundamental mode and multimode beam quality factor of PBUR were measured and compared with thouse of reference resonator with plane pallalel mirrors. In characterizing the beam quality, the $M^2$ concept was used. The focusability of laser beam in unstable resonators was discussed with this $M^2$.

  • PDF

Distance measurement using pulsed eye-safe laser (펄스형 eye-safe 레이저를 이용한 거리측정)

  • 유병헌;조성학;장원석;김재구;황경현;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.106-109
    • /
    • 2004
  • In this project, we have developed the eye-safe LRF system of 1.54 ${\mu}{\textrm}{m}$ wavelength using OPO. The maximum measured distance was 3.7km in outdoor experiment. We used Nd:YAG (1064nm) as a laser medium. It was applied BBO to construct the system. We also developed a time-counter for the range finder using a method of TOF (time of flight). The counter-clock used at the time counter was 320MHz making resolution within $\pm$1m. Start and stop signals were detected by two channel systems using PIN and APD. The LRF's repetition rate was 4 times per minute. The energy was measured to be over 9mJ. And, pulse-duration was 23ns. Resolution was $\pm$2m at the distance measurement using a target.

  • PDF

Analysis of Measuring Error for Particle Size Analysis by Laser Diffraction Spectrometer (입자크기분석을 위한 레이저회절 분광계의 측정오차 분석)

  • Ha, Sang-An;Son, Heui-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.713-722
    • /
    • 2000
  • This study analysed error of measurement and reproducibility for particle size analysis by the laser diffraction spectrometer. Laser diffraction spectrometers has become a very important method of particle size analysis. This measuring method has the advantage of simple operation, good reproducibility and rapid analysis. A feeding and dispersing system have been developed, which allows mass throughputs between 0.1~23 g/min in flowing air and 1.4~35% in flowing liquid. It has been used as a feeder unit for wet and dry particle size analysis from diffraction patterns. Relevant parameters, such as particle shape, particle size, dispersion, flow rate, concentration were analysed for measuring error. And system parameters of instruments for measurement of dynamic processes, eg, measuring time, focal plane, injection pressure drop and dispersion effect by the ultrasonic and mixing of preliminary treatment, were also discussed.

  • PDF