• Title/Summary/Keyword: 레이저 거리 센서

Search Result 109, Processing Time 0.025 seconds

Spatial Analysis by Matching Methods using Elevation data of Aerophoto and LIDAR (항공사진과 LIDAR 표고 데이터의 매칭 기법에 의한 공간정보 분석 연구)

  • Yeon, sang-ho;Lee, Young-wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.449-452
    • /
    • 2008
  • The building heights of big cities which charged with most space are 3-D information as relative vertical distance from ground control points, but they didn't know the heights using contour with maps as lose of skyline or building heights for downtown, practically continuously developed of many technology methods for implementation of 3-D spatial earth. So, For the view as stereos of variety earth form generated 3-D spatial and made terrain perspective map, 3-D simulated of regional and urban space as aviation images. In this papers, it composited geospatial informations and images by DEM generation, and developed and presented for techniques overlay of CAD data and photos captured at our surroundings uses. Particularly, The airborne LiDAR surveying which are very interesting trend have laser scanning sensor and determine the ground heights through detecting angle and range to the grounds, and then designated 3-D spatial composite and simulation from urban areas. Therefore in this papers are suggested ease selections on the users situation by compare as various simulations that its generation of 3-D spatial image by collective for downtown space and urban sub, and the implementation methods for more accurate, more select for the best images.

  • PDF

Design of Water Surface Hovering Drone for Underwater Stereo Photography (수중 입체촬영을 위한 수면호버링 드론 설계)

  • Kim, Hyeong-Gyun;Kim, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.7-12
    • /
    • 2019
  • In order to shoot underwater, the photographer must be equipped with shooting equipment and enter into the water. Since the photographer directly enters the water, safety accidents occur frequently due to various obstacles or deep water in the water. The proposed underwater stereo photography technique can solve the safety accident problem caused by the entry of the photographer into the water by using the drone for underwater photographing. In addition, this technique has the advantage of obtaining underwater images at low cost. In this study, the angle of the proposed cam for stereoscopic photography was analyzed and the condition that the proper stereoscopic image can be viewed was defined as the distance from the floor of 18cm to the floor distance of 41.4cm. This provision is proposed to be used to adjust the height of the shooting area descended by the elevation chain of the water surface hovering drones.

플라즈마 공정 진단을 위한 공간 분해 발광 분광 분석법 소개

  • Park, Chang-Hui;Kim, Dong-Hui;Choe, Seong-Won;Lee, Chang-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.81-81
    • /
    • 2013
  • 반도체, LCD, MEMs 등 미세 전자소자의 제작과 깊은 관련이 있는 IT 산업은 자동차 산업과 함께 세계 경제를 이끌고 있는 핵심 산업이며, 그 발전 가능성이 크다고 할 수 있다. 이 중 반도체, LCD 공정 기술에 관해서 대한민국은 세계를 선도하여 시장을 이끌어 나가고 있는 실정이다. 이들의 공정기술은 주로 높은 수율(yield)을 기반으로 한 대량 생산 기술에 초점이 맞추어져 있기 때문에, 현재와 같은 첨예한 가격 경쟁력이 요구되는 시대에서 공정 기술 개발을 통해 수율을 최대한으로 이끌어 내는 것이 현재 반도체를 비롯한 미세소자 산업이 직면하고 있는 하나의 중대한 과제라 할 수 있다. 특히 반도체공정에 있어 발전을 거듭하여 현재 20 nm 수준의 선폭을 갖는 소자들의 양산이 계획 있는데 이와 같은 나노미터급 선폭을 갖는 소자 양산과 관련된 CD (critical dimension)의 감소는 공차의 감소를 유발시키고 있으며, 패널의 양산에 있어서 생산 효율 증가를 위한 기판 크기의 대형화가 이루어지고 있다. 또한, 소자의 집적도를 높이기 위하여 높은 종횡비(aspect ratio)를 요구하는 공정이 일반화됨에 따라 단일 웨이퍼 내에서의 공정의 균일도(With in wafer uniformity, WIWU) 및 공정이 진행되는 시간에 따른 균일도(Wafer to wafer uniformity)의 변화 양상에 대한 파악을 통한 공정 진단에 대한 요구가 급증하고 있는 현실이다. 반도체 및 LCD 공정에 있어서 공정 균일도의 감시 및 향상을 위하여 박막, 증착, 식각의 주요 공정에 널리 사용되고 있는 플라즈마의 균일도(uniformity)를 파악하고 실시간으로 감시하는 것이 반드시 필요하며, 플라즈마의 균일도를 파악한다는 것은 플라즈마의 기판 상의 공간적 분포(radial direction)를 확인하여 보는 것을 의미한다. 현재까지 플라즈마의 공간적 분포를 진단하는 대표적인 방법으로는 랭뮤어 탐침(Langmuir Probe), 레이저 유도 형광법(Laser Induced Fluorescence, LIF) 그리고 광섬유를 이용한 발광분광법(Optical Emission Spectroscopy, OES)등이 있으나 랭뮤어 탐침은 플라즈마 본연의 상태에서 섭동(pertubation) 현상에 의한 교란, 이온에너지 측정의 한계로 인하여 공정의 실시간 감시에 적합하지 않으며, 레이저 유도 형광법은 측정 물질의 제한성 때문에 플라즈마 내부에 존재하는 다양한 종의 거동을 살필 수 없다는 단점 및 장치의 설치와 정렬(alignment)이 상대적으로 어려워 산업 현장에서 사용하기에 한계가 있다. 본 연구에서는 최소 50 cm에서 최대 400 cm까지 플라즈마 내 측정 거리에서 최대 20 mm 공간 분해가 가능한 광 수광 시스템 및 플라즈마 공정에서의 라디칼의 상태 변화를 분광학적 비접촉 방법으로 계측할 수 있는 발광 분광 분석기를 접목하여 플라즈마 챔버 내의 라디칼 공간 분포를 계측할 수 있는 진단 센서를 고안하고 이를 실 공정에 적용하여 보았다. 플라즈마 증착 및 식각 공정에서 형성된 박막의 두께 및 식각률과 공간 분해발광 분석법을 통하여 계측된 결과와의 매우 높은 상관관계를 확인하였다.

  • PDF

3D Model Generation and Accuracy Evaluation using Unmanned Aerial Oblique Image (무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.587-593
    • /
    • 2019
  • The field of geospatial information is rapidly changing due to the development of sensor and data processing technology that can acquire location information. And demand is increasing in various related industries and social activities. The construction and utilization of three dimensional geospatial information that is easy to understand and easy to understand can be an essential element to improve the quality and reliability of related services. In recent years, 3D laser scanners are widely used as 3D geospatial information construction technology. However, 3D laser scanners may cause shadow areas where data acquisition is not possible when objects are large in size or complex in shape. In this study, 3D model of an object has been created by acquiring oblique images using an unmanned aerial vehicle and processing the data. The study area was selected, oblique images were acquired using an unmanned aerial vehicle, and point cloud type 3D model with 0.02 m spacing was created through data processing. The accuracy of the 3D model was 0.19m and the average was 0.11m. In the future, if accuracy is evaluated according to shooting and data processing methods, and 3D model construction and accuracy evaluation and analysis according to camera types are performed, the accuracy of the 3D model will be improved. In the point cloud type 3D model, Cross section generation, drawing of objects, and so on, it is possible to improve work efficiency of spatial information service and related work.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.

Design and Implementation of the Stop line and Crosswalk Recognition Algorithm for Autonomous UGV (자율 주행 UGV를 위한 정지선과 횡단보도 인식 알고리즘 설계 및 구현)

  • Lee, Jae Hwan;Yoon, Heebyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.271-278
    • /
    • 2014
  • In spite of that stop line and crosswalk should be aware of the most basic objects in transportation system, its features extracted are very limited. In addition to image-based recognition technology, laser and RF, GPS/INS recognition technology, it is difficult to recognize. For this reason, the limited research in this area has been done. In this paper, the algorithm to recognize the stop line and crosswalk is designed and implemented using image-based recognition technology with the images input through a vision sensor. This algorithm consists of three functions.; One is to select the area, in advance, needed for feature extraction in order to speed up the data processing, 'Region of Interest', another is to process the images only that white color is detected more than a certain proportion in order to remove the unnecessary operation, 'Color Pattern Inspection', the other is 'Feature Extraction and Recognition', which is to extract the edge features and compare this to the previously-modeled one to identify the stop line and crosswalk. For this, especially by using case based feature comparison algorithm, it can identify either both stop line and crosswalk exist or just one exists. Also the proposed algorithm is to develop existing researches by comparing and analysing effect of in-vehicle camera installation and changes in recognition rate of distance estimation and various constraints such as backlight and shadow.

A Study on IoT and Cloud-based Real-time Bridge Height Measurement Service (사물인터넷과 클라우드 기반의 실시간 교량 높이 계측 서비스 연구)

  • Choi, Cha-Hwan;Cheon, Young-Man;Jeong, Seung-Hun;Tcha, Dek-Kie;Lee, Young-Jae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Currently, the height of ships that can pass under Busan Harbor Bridge is limited to 60m or shorter, so that large-sized ships of 60m or taller cannot use Busan Harbor international passenger terminal. Accordingly, this study has developed a service which measures continuously the change of bridge height by water level changes and provides such in real-time for safe bridge passage of large-sized ships of 60m or taller. The measurement system comprised of high-precision laser distance measurement device, GPS sensor, optical module, and damping structure is used to measure the bridge height change according to tide level changes, and the measured information is provided in real-time through cloud-based mobile app. Also, in order to secure objective bridge height data for changes to height limits and navigation supports, the observation data was analyzed and forecast model was drawn. As a result, it became an objective evidence to revise the passage height rules of the Busan Port Bridge from 60 meters to 63 meters.

Regional Traffic Information Acquisition by Non-intrusive Automatic Vehicle Identification (비매설식 자동차량인식장치를 이용한 구간교통정보 산출 방법 연구)

  • Kang Jin-Kee;Son Youngtae;Yoon Yeo-Hwan;Byun Sangchul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • This paper describes about non-burial AVI (Automatic Vehicle Identification) system using general vehicle as probe car for obtaining more accurate traffic information while conserving road pavement surface. Existing spot traffic detectors have their own limits of not obtaining right information owing to its mathematical method. Burial AVI systems have some defects, causing traffic jam, needing much maintenance cost because of frequent cutting of loop and piezo-electric sensors. Especially, they have hard time to make right detection, when it comes to jamming time. Therefore, in this paper, we propose non-burial AVI system with laser trigger unit. Proposed non-burial AVI system is developed to obtain regional traffic information from normal Passing vehicle by automatic license number recognition technology. We have adapted it to national highway section between Suwon city and Pyong$\~$Taek city(9.5km) and get affirmative results. Vehicle detection rate of laser trigger unit is more than 95$\%$, vehicle recognition rate is 87.8$\%$ and vehicle matching rate is about 14.3$\%$. So we regard these as satisfying results to use the system for traffic information service. We evaluate proposed AVI system by regulation of some institutions which are using similar AVI system and the proposed system satisfies all conditions. For future study, we have plan of detailed research about proper lane number from all of the target lanes, optimal section length, information service period, and data fusion method for existing spot detector.

  • PDF