• Title/Summary/Keyword: 레이저 가공성

Search Result 197, Processing Time 0.027 seconds

Superplastic Microextrusion for Microgears (초소형 기어 제조를 위한 초소성 재료의 미세압출)

  • Kim, Jae-Yeon;Joo, Se-Min;Kim, Ho-Kyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • Fine grained superplastic Zn-22%Al alloy was extruded using a laser machined micro-die to produce a micro-gear shaft. Extrusion process was conducted under a constant pressure at constant temperatures ranging from 503 to 563K. Laser machining was capable to machine a micro-die with close tolerances and adequate surface quality. The extrusion rate increased with extrusion load under constant extrusion temperature. The rate reached a steady state and became constant after a certain period. There was a small instantaneous stroke on application of the load and then a very brief primary stage which preceded steady-state flow. The micro-extrusion process was proven to produce a micro-gear shaft successfully using a fine grained superplastic Zn-22%Al alloy.

Design and Implementation of the Front part of an Agricultural Electric Vehicle based on Vacuum Forming using Computational Structural Analysis

  • Lee, Hun-Kee;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.45-51
    • /
    • 2021
  • In this paper, we propose a 3D design method of the vacuum forming method of the front part to improve the lightness and production efficiency of agricultural electric vehicles. For agricultural electric vehicles, lightness and production efficiency are more important than the strength of materials for collision protection. In this paper, we propose a vacuum forming design method that can replace complex machining processes such as laser machining, bending, and painting. The main purpose of this research is to improve product stability, productivity and convenience through 3D design of the front part and development of vacuum forming mold technology. Research procedure follows the 3D modeling of the front part using CATIA, finite element analysis for the structural stability using ABAQUS, manufacturing prototype for the investigation of the dimensions using 3D scanner and actual driving test under agricultural electric vehicle usage environment. The results verifies the proposed 3D design method of the vacuum forming method and are expected to be widely used by agricultural workers through the simplification of the production process of agricultural electric vehicles.

Injection mold development applying starting mold material, urethane resin(TSR-755) (우레탄레진(TSR-755)을 적용한 시작형 사출금형 연구)

  • Kim, Kwang-Hee;Kim, Jeong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4392-4397
    • /
    • 2012
  • In this study, we used the commercial package (Unigraphics) to construct a junction box cable car when laser plastic parts have been processed using urethane resin(TSR-755) as a starting mold material. After construction, we carried out the filing, packing, cooling, and deforming analyzation using Injection Molding Analysis (Simpoe-Mold) to determine the gate positioning and automatic cooling cycle through the examination. The results show that inserting into the injection mold after processing ceramic has reduced the time of thermal conductivity of molding and cooling; and quick selection of gates and cooling lines could possibly cause an improvement of productivity.

Process Analysis of Melting Behaviors in Selective Laser Melting Process (선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석)

  • Sung, M.Y.;Joo, B.D.;Kim, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.

Micro Channel Fabrication Technology Using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술)

  • 양성빈;장원석;김재구;신보성;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.216-224
    • /
    • 2004
  • In this study, we have developed a new UV$({\lambda}=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. The developed laser manufacturing process for laser micromachining is that, after extracting coordinates of shape data from CAD model data, a beam path considering manufacturing features of laser beam is created by using genetic algorithm. This generated manufacturing process is sent to stage controller. In order to improve the surface quality of micro parts, we have carried out experiments on iteration manufacturing and beam step-over by using a minimum focus size. Moreover, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

A Study on Water Droplet Lens Effect of UV Laser Micromachining Process (UV 레이저 미세 가공공정에서의 물 액적 렌즈 효과에 관한 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.773-777
    • /
    • 2012
  • Recently UV laser micromachining processes is widely introduced to meet the needs of advanced components of IT, BT and ET industries. Due to the characteristics of non-contact and high-speed laser processing, UV laser micromachining is applied to manufacture very thin substrate such as polymer, metals and composite. These minimum line width obtained by UV laser micromachining is generally determined from laser wavelength, optical lens and its numerical aperture. In this paper we will show the lens effect of water droplet on the surface of workpiece to reduce the line width when UV laser light is irradiated and focused through the water droplet. Because of the refraction effect generated by the semi-spherical or spherical shape of water droplet, we can find smaller line width. And water droplet could not only protect thermal deformation, but also carry away burr around micro dent. Firstly fundamental theory of minimum line width was derived from relationship between the geometry of water droplet and laser light trace, and then experimental and simulation results will be finally compared to verify the effectiveness of water droplet lens effect of UV laser micromachining process.

Feasibility Study of Laser Cladding for Co-based Coating on SCM440 and GC250 (Co-base 분말을 적용한 SCM440과 GC250의 레이저 클래딩 가공성 평가)

  • Choi, Byungjoo;Lee, Moon G.;Hong, Minsung;Ahn, Byungmin;Jung, Do-Hyun;Lee, Kwangjae;Lee, Chunggeun;Jeon, Yongho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.337-343
    • /
    • 2017
  • The laser cladding process on structural steel (SCM440) and gray cast iron (GC250) substrates with Co-based powder (Stellite 12) was studied. A diode laser (2 kW) was used as a heat source, and the powder was supplied by a disc rotary powder feeder. The relationship between the laser cladding process and the cross-sectional analysis of coating was examined based on coating shape and microstructure. Additionally, the microhardness was measured to confirm the mechanical property improvements. As a result, proper laser cladding conditions were selected through this study and verified by cross-sectional analysis. In addition, the evaluation process for laser cladding feasibility was conducted on the selected materials.

A Study on Rapid Fabrication of Micro Lens Array using 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작에 관한 연구)

  • Je, S.K.;Park, S.H.;Choi, C.K.;Shin, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Micro lens array(MLA) is widely used in information technology(IT) industry fields for various applications such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method having the processes of micro etching, electroplating, micro machining and laser local heating. Laser thermal relaxation method is introduced in marking of microdots on the surface of densified glass. In this paper, we have proposed a new direct fabrication process using UV laser local thermal-expansion(UV-LLTE) and investigated the optimal processing conditions of MLA on the surface of negative photo-resist material. We have also studied the 3D shape of the micro lens obtained by UV laser irradiation and the optimal process conditions. And then, we made chrome mold by electroplating. After that, we made MLA using chrome mold by hot embossing processing. Finally, we have measured the opto-physical properties of micro lens and then have also tested the possibility of MLA applications.

The Study of Glass Crystallization Mechanism Using Femtosecond Laser Pulse (극초단파레이저를 활용한 유리의 결정화 메커니즘 고찰)

  • Moon P.Y.;Yoon D.K.;Lee K.T.;Shin S.B.;Cho S.H.;Ryu B.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.213-219
    • /
    • 2006
  • To improve the strength of glass is being studied in order to contribute to weight saving of flat panel displays. Generally, the strength achieved of glass-ceramics is higher as is the fracture toughness by the formation of a heterogeneous phase inside glass. In this study, Ag-doped $45SiO_2-24CaO-24Na_2O-4P_2O_5\;and\;70SiO_2-10CaO-24Na_2O-10TiO_2$ glasses were irradiated to strengthen by crystallization using femto-second laser pulse. XRD, Nano-indenter and SEM etc., irradiation of laser pulse without heat-treated samples was analyzed. Samples irradiated by laser had higher value($4.4{\sim}4.56^*10-3Pa$) of elastic modulus which related with strength of glass than values heat-treated samples and these are $1.2{\sim}1.5$ times higher values than them of mother glass. This process can be applicable to the strengthening of thinner glass plate, and it has an advantage over traditional heat-treatment and ion-exchange method.

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices (레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술)

  • Jeon, Sangheon;Park, Rowoon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.