Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.509-511
/
1999
본 논문에서는 일반적으로 영역 기반형 분할방법보다 우수한 분할결과와 계산의 효율성을 가지는 경계선 기반형 방법의 하나인 scan line approximation 방법을 응용함으로써 경계선의 기하학적 해석이 가능하도록 하는 경계선 강도(edge intensity) 정보를 제공한다. 따라서 면 특성과 국부적인 면 특성인 면 법선과 면 곡률정보 없이 잡음에 강건하고 계산의 효율성에서 우수한 거리영상분할 방법을 제안한다. 합성 거리영상을 대상으로 scan line approximation 방법을 응용하여 얻어진 경계선을 경계선 그룹화의 영역 레이블링을 거쳐서 면 특징을 추출하였다.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.277-280
/
2003
본 연구에서는 자궁종양 세포를 정상, 비정상으로 진단하기 위한 세포핵의 특성값 추출 방법으로 3차원 형태학적 분석 방법을 제안한다. 컨포컬 현미경을 이용하여 3차원 볼륭데이터를 획득하고 3차원 연결 성분 레이블링을 적용하였다 레이블링 후, 각각의 세포핵으로부터 3차원 형태학적 특성값을 추출하였으며 정상세포핵과 비정상세포핵의 3차원 형태계측에 대한 차이를 비교하였다. 이는 잘린 단면의 각도나 두께에 따라 서로 다른 분석 결과를 나타내는 2차원 영상분석방법의 한계를 극복할 수 있으며 실체에 가까운 계측으로 보다 객관적이고 정확한 병리진단을 위한 보조도구로써 활용될 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.389-391
/
2013
본 논문에서는 초음파 검사자가 효율적으로 충수염을 진단할 수 있도록 하기 위하여 초음파 영상에서 충수를 추출하는 방법을 제안한다. 충수를 추출하는 과정은 초음파 영상에서 Ends_in Search Stretching 기법을 적용하여 명암 대비를 강조하고, Max-Min 이진화, 영역 레이블링, 잡음 제거, Cubic Spline 보간법을 적용하여 복부 근육의 하단 근막 부분을 추출한다. 초음파 영상에서 추출된 근막 영역을 제거한 후, K-Means 클러스터링과 영역 레이블링을 적용하여 충수 영역을 추출한다. 제안된 방법을 초음파 영상을 대상으로 실험한 결과, 충수염을 진단하기에 적합한 충수 영역이 추출되는 것을 영상의학과 전문의를 통하여 확인하였다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.293-296
/
2000
본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.
GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.
본 논문에서는 가상의 블루스크린(Virtual Blue Screens, VBS)을 이용한 반자동 영상분할 기법을 제안한다. 가상 블루스크린은 동영상에서 배경영역을 특정한 값으로 채워 만든 참조영상으로 정의한다. 반자동 영상 분할 기법은 크게 화면내 영상분할과 화면간 영상분할의 두 단계로 이루어진다. 화면내 영상분할은 VBS와 원영상의 형태학적 분할 기법을 사용하고, 화면간 영상 분할은 두개의 연속하는 화면에서 변화검출(Change Detection)로 이루어진다 [1]. 본 논문에서는 효과적인 변화검출을 위하여 제안된 VBS를 사용한다. VBS를 이용한 영상분할에서는 우선, 이전화면에서 만들어진 VBS를 참조하여 다음화면에서 움직임 영역을 예측한다. 이렇게 예측된 영상과 원영상에 대해 형태학적 분할 기법(Morphological Segmentation Technique)을 이용해서 각각에 대한 레이블 마스크(Label Mask)를 얻는다 [2]. 두개의 레이블 마스크 사이에는 서로 공통된 영역들이 존재하게 되는데, 이런 공통된 영역을 추출함으로써 움직임 객체를 검출한다. 현재화면에서 검출된 움직임 객체는 다음화면을 위한 가상의 블루 스크린을 만드는데 사용한다.
Kim, Seon-wu;Ji, Seon-young;Seol, Jae-wook;Jeong, Hee-seok;Choi, Sung-pil
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.461-464
/
2018
최근 학술문헌이 급격하게 증가함에 따라, 학술문헌간의 연결성 및 메타데이터 추출 등의 핵심 자원으로서 활용할 수 있는 참고문헌에 대한 활용 연구가 진행되고 있다. 본 연구에서는 국내 학술지의 참고문헌이 가진 각 메타데이터를 자동적으로 인식하여 추출할 수 있는 참고문헌 메타데이터 인식에 대하여, 연속적 레이블링 방법론을 기반으로 접근한다. 심층학습 기술 중 연속적 레이블링에 우수한 성능을 보이고 있는 Bidirectional GRU-GRU CRF 모델을 기반으로 참고문헌 메타데이터 인식에 적용하였으며, 2010년 이후의 10종의 학술지내의 144,786건의 논문을 활용하여 추출한 169,668건의 참고문헌을 가공하여 실험하였다. 실험 결과, 실험집합에 대하여 F1 점수 97.21%의 우수한 성능을 보였다.
Kim, Young-Il;Kim, Jung-Hoon;Hong, Seok-Keun;Cho, Seok-Je
Proceedings of the IEEK Conference
/
2005.11a
/
pp.537-540
/
2005
본 논문에서는 사람의 감정, 건강상태, 정신상태등 다양한 정보를 포함하고 있는 웃음, 슬픔, 졸림, 놀람, 윙크, 무표정 등의 표정을 인식하기 위한 표정의 특징이 되는 얼굴의 국부적 요소인 눈과 입을 검출하여 표정의 특징을 추출한다. 표정 특징의 추출을 위한 전체적인 알고리즘 과정으로는 입력영상으로부터 칼라 정보를 이용하여 얼굴 영역을 검출하여 얼굴에서 특징점의 위치 정보를 이용하여 국부적 요소인 특징점 눈과 입을 추출한다. 이러한 특징점 추출 과정에서는 에지, 이진화, 모폴로지, 레이블링 등의 전처리 알고리즘을 적용한다. 레이블 영역의 크기를 이용하여 얼굴에서 눈, 눈썹, 코, 입 등의 1차 특징점을 추출하고 누적 히스토그램 값과 구조적인 위치 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확한 눈과 입을 추출한다. 표정 변화에 대한 표정의 특징을 정량적으로 측정하기 위해 추출된 특징점 눈과 입의 눈과 입의 크기와 면적, 미간 사이의 거리 그리고 눈에서 입까지의 거리 등 기하학적 정보를 이용하여 6가지 표정에 대한 표정의 특징을 추출한다.
In this paper, we propose a Dilated Convolution Gate Linear Unit (DCGLU) to mitigate the lack of sparsity and small receptive field problems caused by the segmentation map extraction process in sound event detection with weak labels. In the advent of deep learning framework, segmentation map extraction approaches have shown improved performance in noisy environments. However, these methods are forced to maintain the size of the feature map to extract the segmentation map as the model would be constructed without a pooling operation. As a result, the performance of these methods is deteriorated with a lack of sparsity and a small receptive field. To mitigate these problems, we utilize GLU to control the flow of information and Dilated Convolutional Neural Networks (DCNNs) to increase the receptive field without additional learning parameters. For the performance evaluation, we employ a URBAN-SED and self-organized bird sound dataset. The relevant experiments show that our proposed DCGLU model outperforms over other baselines. In particular, our method is shown to exhibit robustness against nature sound noises with three Signal to Noise Ratio (SNR) levels (20 dB, 10 dB and 0 dB).
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.05a
/
pp.801-804
/
2008
During face recognition process, face detection process is most preceding process. However, face has very high floating property, so the result could be very different according to which method we used. This paper studies about eye detection and eye blinking verification using edge and color information from YCbCr distribution map, segmentation, and labeling methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.