• Title/Summary/Keyword: 레이블 추출

Search Result 120, Processing Time 0.025 seconds

A study on range image segmentation and surface feature extraction (거리 영상 분할과 면 특징 추출에 관한 연구)

  • 현대환;김대현;이선호;최종수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.509-511
    • /
    • 1999
  • 본 논문에서는 일반적으로 영역 기반형 분할방법보다 우수한 분할결과와 계산의 효율성을 가지는 경계선 기반형 방법의 하나인 scan line approximation 방법을 응용함으로써 경계선의 기하학적 해석이 가능하도록 하는 경계선 강도(edge intensity) 정보를 제공한다. 따라서 면 특성과 국부적인 면 특성인 면 법선과 면 곡률정보 없이 잡음에 강건하고 계산의 효율성에서 우수한 거리영상분할 방법을 제안한다. 합성 거리영상을 대상으로 scan line approximation 방법을 응용하여 얻어진 경계선을 경계선 그룹화의 영역 레이블링을 거쳐서 면 특징을 추출하였다.

  • PDF

3D morphological analysis of uterine tumor cell (자궁종양 세포의 3차원 형태학적 분석)

  • 최익환;최현주;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.277-280
    • /
    • 2003
  • 본 연구에서는 자궁종양 세포를 정상, 비정상으로 진단하기 위한 세포핵의 특성값 추출 방법으로 3차원 형태학적 분석 방법을 제안한다. 컨포컬 현미경을 이용하여 3차원 볼륭데이터를 획득하고 3차원 연결 성분 레이블링을 적용하였다 레이블링 후, 각각의 세포핵으로부터 3차원 형태학적 특성값을 추출하였으며 정상세포핵과 비정상세포핵의 3차원 형태계측에 대한 차이를 비교하였다. 이는 잘린 단면의 각도나 두께에 따라 서로 다른 분석 결과를 나타내는 2차원 영상분석방법의 한계를 극복할 수 있으며 실체에 가까운 계측으로 보다 객관적이고 정확한 병리진단을 위한 보조도구로써 활용될 수 있다.

  • PDF

Extraction of Appendix from Ultrasonic Images by Using Cubic Spline (3차 스플라인을 이용한 초음파 영상에서의 충수 추출)

  • Choi, Sung-Su;Kim, Han-Byeol;Han, Min-Su;Park, Seung Ik;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.389-391
    • /
    • 2013
  • 본 논문에서는 초음파 검사자가 효율적으로 충수염을 진단할 수 있도록 하기 위하여 초음파 영상에서 충수를 추출하는 방법을 제안한다. 충수를 추출하는 과정은 초음파 영상에서 Ends_in Search Stretching 기법을 적용하여 명암 대비를 강조하고, Max-Min 이진화, 영역 레이블링, 잡음 제거, Cubic Spline 보간법을 적용하여 복부 근육의 하단 근막 부분을 추출한다. 초음파 영상에서 추출된 근막 영역을 제거한 후, K-Means 클러스터링과 영역 레이블링을 적용하여 충수 영역을 추출한다. 제안된 방법을 초음파 영상을 대상으로 실험한 결과, 충수염을 진단하기에 적합한 충수 영역이 추출되는 것을 영상의학과 전문의를 통하여 확인하였다.

  • PDF

Face Expression Recognition Algorithm Using Geometrical Properties of Face Features and Accumulated Histogram (얼굴 특징자들의 구조적 특성과 누적 히스토그램을 이용한 얼굴 표정 인식 알고리즘)

  • 김영일;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.

  • PDF

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

Semi-Automatic Video Segmentation Using Virtual Blue Screens (가상의 블루스크린을 이용한 반자동 동영상분할)

  • 신종한;김대희;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.279-282
    • /
    • 2001
  • 본 논문에서는 가상의 블루스크린(Virtual Blue Screens, VBS)을 이용한 반자동 영상분할 기법을 제안한다. 가상 블루스크린은 동영상에서 배경영역을 특정한 값으로 채워 만든 참조영상으로 정의한다. 반자동 영상 분할 기법은 크게 화면내 영상분할과 화면간 영상분할의 두 단계로 이루어진다. 화면내 영상분할은 VBS와 원영상의 형태학적 분할 기법을 사용하고, 화면간 영상 분할은 두개의 연속하는 화면에서 변화검출(Change Detection)로 이루어진다 [1]. 본 논문에서는 효과적인 변화검출을 위하여 제안된 VBS를 사용한다. VBS를 이용한 영상분할에서는 우선, 이전화면에서 만들어진 VBS를 참조하여 다음화면에서 움직임 영역을 예측한다. 이렇게 예측된 영상과 원영상에 대해 형태학적 분할 기법(Morphological Segmentation Technique)을 이용해서 각각에 대한 레이블 마스크(Label Mask)를 얻는다 [2]. 두개의 레이블 마스크 사이에는 서로 공통된 영역들이 존재하게 되는데, 이런 공통된 영역을 추출함으로써 움직임 객체를 검출한다. 현재화면에서 검출된 움직임 객체는 다음화면을 위한 가상의 블루 스크린을 만드는데 사용한다.

  • PDF

Bidirectional GRU-GRU CRF based Citation Metadata Recognition (Bidirectional GRU-GRU CRF 기반 참고문헌 메타데이터 인식)

  • Kim, Seon-wu;Ji, Seon-young;Seol, Jae-wook;Jeong, Hee-seok;Choi, Sung-pil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.461-464
    • /
    • 2018
  • 최근 학술문헌이 급격하게 증가함에 따라, 학술문헌간의 연결성 및 메타데이터 추출 등의 핵심 자원으로서 활용할 수 있는 참고문헌에 대한 활용 연구가 진행되고 있다. 본 연구에서는 국내 학술지의 참고문헌이 가진 각 메타데이터를 자동적으로 인식하여 추출할 수 있는 참고문헌 메타데이터 인식에 대하여, 연속적 레이블링 방법론을 기반으로 접근한다. 심층학습 기술 중 연속적 레이블링에 우수한 성능을 보이고 있는 Bidirectional GRU-GRU CRF 모델을 기반으로 참고문헌 메타데이터 인식에 적용하였으며, 2010년 이후의 10종의 학술지내의 144,786건의 논문을 활용하여 추출한 169,668건의 참고문헌을 가공하여 실험하였다. 실험 결과, 실험집합에 대하여 F1 점수 97.21%의 우수한 성능을 보였다.

  • PDF

Facial Expression Feature Extraction for Expression Recognition (표정 인식을 위한 얼굴의 표정 특징 추출)

  • Kim, Young-Il;Kim, Jung-Hoon;Hong, Seok-Keun;Cho, Seok-Je
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.537-540
    • /
    • 2005
  • 본 논문에서는 사람의 감정, 건강상태, 정신상태등 다양한 정보를 포함하고 있는 웃음, 슬픔, 졸림, 놀람, 윙크, 무표정 등의 표정을 인식하기 위한 표정의 특징이 되는 얼굴의 국부적 요소인 눈과 입을 검출하여 표정의 특징을 추출한다. 표정 특징의 추출을 위한 전체적인 알고리즘 과정으로는 입력영상으로부터 칼라 정보를 이용하여 얼굴 영역을 검출하여 얼굴에서 특징점의 위치 정보를 이용하여 국부적 요소인 특징점 눈과 입을 추출한다. 이러한 특징점 추출 과정에서는 에지, 이진화, 모폴로지, 레이블링 등의 전처리 알고리즘을 적용한다. 레이블 영역의 크기를 이용하여 얼굴에서 눈, 눈썹, 코, 입 등의 1차 특징점을 추출하고 누적 히스토그램 값과 구조적인 위치 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확한 눈과 입을 추출한다. 표정 변화에 대한 표정의 특징을 정량적으로 측정하기 위해 추출된 특징점 눈과 입의 눈과 입의 크기와 면적, 미간 사이의 거리 그리고 눈에서 입까지의 거리 등 기하학적 정보를 이용하여 6가지 표정에 대한 표정의 특징을 추출한다.

  • PDF

Dilated convolution and gated linear unit based sound event detection and tagging algorithm using weak label (약한 레이블을 이용한 확장 합성곱 신경망과 게이트 선형 유닛 기반 음향 이벤트 검출 및 태깅 알고리즘)

  • Park, Chungho;Kim, Donghyun;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.414-423
    • /
    • 2020
  • In this paper, we propose a Dilated Convolution Gate Linear Unit (DCGLU) to mitigate the lack of sparsity and small receptive field problems caused by the segmentation map extraction process in sound event detection with weak labels. In the advent of deep learning framework, segmentation map extraction approaches have shown improved performance in noisy environments. However, these methods are forced to maintain the size of the feature map to extract the segmentation map as the model would be constructed without a pooling operation. As a result, the performance of these methods is deteriorated with a lack of sparsity and a small receptive field. To mitigate these problems, we utilize GLU to control the flow of information and Dilated Convolutional Neural Networks (DCNNs) to increase the receptive field without additional learning parameters. For the performance evaluation, we employ a URBAN-SED and self-organized bird sound dataset. The relevant experiments show that our proposed DCGLU model outperforms over other baselines. In particular, our method is shown to exhibit robustness against nature sound noises with three Signal to Noise Ratio (SNR) levels (20 dB, 10 dB and 0 dB).

Face detection and eye blinking verification in common photos (인물 사진에서의 얼굴 추출과 눈 개폐 여부 검증)

  • Bae, Jung-Ho;Hwang, Young-Chul;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.801-804
    • /
    • 2008
  • During face recognition process, face detection process is most preceding process. However, face has very high floating property, so the result could be very different according to which method we used. This paper studies about eye detection and eye blinking verification using edge and color information from YCbCr distribution map, segmentation, and labeling methods.

  • PDF