• 제목/요약/키워드: 레이블 추출

검색결과 120건 처리시간 0.027초

도식화된 지도 생성을 위한 아이콘과 레이블 배치 알고리즘 (An Icon and Label Replacement Algorithm for Generating Schematic Map)

  • 류동성;박동규;이도훈
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.596-599
    • /
    • 2003
  • 본 논문에서는 아이콘과 레이블을 가진 도식화된 지도(Schematic map)를 생성차기 위한 아이콘과 레이블의 효과적인 배치 알고리즘을 제안한다. 이 알고리즘은 먼저 지리정보시스템(GIS)의 데이터베이스로부터 원시 정보를 파서로 분석한 후, 지형도 데이터에서 시각화에 필요한 부분만을 추출한 후 이들 선분에 대하여 선분 간략화 알고리즘을 적용하여 기도를 생성한다. 그리고 장식 및 정보의 표기를 목적으로 사용하는 아이콘 및 레이블 정보들의 특징을 반영하여 후보 영역을 생성한다. 마지막으로 생성된 후보영역 내에서 중첩이 발생하기 않으면서 아이콘을 설명하는데 적절한 최적화된 위치의 레이블을 배치하여 이들의 배치 값들 중 최적의 값을 얻은 후 이 최적의 위치에 아이콘과 레이블을 배치하도록 하였다.

  • PDF

딥러닝을 이용한 이미지 레이블 추출 기반 해시태그 추천 시스템 설계 및 구현 (Design and Implementation of Hashtag Recommendation System Based on Image Label Extraction using Deep Learning)

  • 김선민;조대수
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.709-716
    • /
    • 2020
  • 소셜 미디어에서 일반적으로 게시물을 올릴 때 이미지의 태그 정보를 사용하는데, 태그를 이용하여 주로 검색이 이루어지기 때문이다. 사용자는 태그를 게시물에 붙임으로써 게시물을 많은 사람들에게 노출시키길 원한다. 또한, 사용자는 게시물과 함께 태깅될 태그를 붙이는 행위를 번거롭게 여겨 태깅하지 않은 게시물도 올리게 된다. 본 논문에서는 입력 이미지와 유사한 이미지를 찾아 해당 이미지에 부착된 레이블을 추출하여 그 레이블이 태그로 존재하는 인스타그램의 게시물들을 찾아 게시물 속 존재하는 다른 태그들을 추천해주는 방법을 제안한다. 제안하는 방법에서는 CNN(Convolutional Neural Network) 딥러닝 기법의 모델을 통하여 이미지로 부터 레이블을 추출하여 추출된 레이블로 인스타그램을 크롤링하여 레이블 외의 태그를 정렬하여 추천해준다. 추천된 태그를 이용하여 이미지를 게시하기도 편해지고, 검색의 노출을 높일 수 있고, 검색오류가 적어 높은 정확도를 도출할 수 있음을 알 수 있다.

계층적 레이블 임베딩을 이용한 세부 분류 개체명 인식 (Fine-grained Named Entity Recognition using Hierarchical Label Embedding)

  • 김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2021
  • 개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.

  • PDF

출입 보안을 위한 레이블링을 이용한 영역 분리 및 지문 중심점 추출 (The Extraction of Fingerprint Corepoint And Region Separation using Labeling for Gate Security)

  • 이건익;전영철;김강
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.243-251
    • /
    • 2008
  • 본 논문에서는 지문 인식에 효율적으로 적용 가능하도록 출입 보안을 위한 레이블링을 이용한 영역 분리 및 지문 중심점 추출 알고리즘을 제안한다. 출입 보안 기술은 출입통제, 근태관리, 컴퓨터 보안, 전자상거래 인증, 정보보호 등이 있다. $128{\times}128$ 크기의 원 영상을 $4{\times}4$ 픽셀 크기로 나누어 방향 영상을 추출하고 잘못된 방향 영상에 대하여 방향 평활화 작업을 수행한다. 추출된 방향 평활화 영상을 각 방향별로 레이블링을 이용하여 영역을 분리하고 3가지 이상의 방향 변화가 나타나는 블록을 중심점으로 추출한다. 기존 방법에서 사용한 중심점 가능 영역이나 중심점 후보 영역을 탐색하지 않고 최대 방향과 레이블링을 이용한 방향별 영역 분리를 통하여 중심점을 추출함으로써 인식률과 매칭률을 높이고자 한다. 실험에 사용된 300개의 지문에 대하여 실험한 결과, Poincare 지수 방법은 94.05%의 추출율을 보였고 제안한 방법은 97.11%의 추출율을 보였다.

  • PDF

그레이 레이블링 및 퍼지 추론 규칙을 이용한 흰색 자동차 번호판 추출 기법 (License Plate Extraction Using Gray Labeling and fuzzy Membership Function)

  • 김도현;차의영
    • 한국정보통신학회논문지
    • /
    • 제12권8호
    • /
    • pp.1495-1504
    • /
    • 2008
  • 2007년부터 흰색 바탕의 자동차 번호판이 등록되어 사용되고 있다. 본 논문은 그레이 레이블링 기법과 퍼지 추론 방법을 이용하여 새롭게 사용되고 있는 흰색 번호판을 추출하기 위 한 방법을 제안한다. 먼저 비재귀 Flood-filling 알고리즘을 개선한 그레이 레이블링(labeling) 기법으로 번호판 후보 영역을 추출한다. 추출된 레이블에 대한 적합도를 퍼지 추론 시스템에 의해 산출한 후 후보 레이블 중에서 가장 적합도가 높은 레이블 영역을 최종 번호판 영역으로 추출한다. 실내외 주차장 및 거리에서 핸드폰 및 디지털 카메라로 획득한 다양한 자동차 번호판 영상을 대상으로 실험한 결과 94%의 추출 성공율을 나타내었다.

준지도학습 기반의 P2P 대출 부도 위험 예측에 대한 연구 (Semi-Supervised Learning to Predict Default Risk for P2P Lending)

  • 김현정
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.185-192
    • /
    • 2022
  • 본 연구는 P2P(Peer-to-Peer) 대출의 부도위험 예측을 위하여 준지도학습(SSL) 기반의 모델을 개발하고자 한다. 검증된 성능에도 불구하고 지도학습(SL) 방법은 완전 지불 또는 채무불이행과 같이 레이블이 결정된 다수의 데이터가 필요한데 충분한 수의 레이블 데이터를 수집하려면 많은 자원과 시간이 필요하다. P2P 플랫폼이 급성장하면서 대출 건수도 매해 급증하였고, 레이블이 없는 데이터도 지속적으로 증가하고 있다. 본 연구는 P2P 대출 플랫폼인 LendingClub에서 수집한 데이터를 사용하였다. P2P 대출 중 레이블이 결정된 대출에서 추출한 정보뿐만 아니라 레이블이 결정되지 않은 대출에서 추출한 정보도 사용하여 부도 위험을 예측하는 SSL 모델을 개발하여 연구를 수행한 결과, 적은 수의 레이블이 결정된 데이터를 사용함에도 불구하고 SSL 방법으로 구축된 모델이 많은 수의 레이블이 결정된 데이터를 사용하여 학습시킨 SL 방법으로 구축된 모델보다 부도 위험 예측성과가 향상되었다.

광 인터리버를 이용한 부반송파 다중화된 광 레이블 검출 (Detection of Subcarrier-Multiplexed Optical Label Using Optical interleave)

  • 신종덕;이문환;김부균
    • 한국통신학회논문지
    • /
    • 제29권12A호
    • /
    • pp.1279-1284
    • /
    • 2004
  • 본 논문에서는 광 인터리버를 이용하여 부반송파 다중화 (subcarrier multiplexed; SCM)된 레이블을 광학적인 방법으로 검출할 수 있는 새롭고 간단한 광 레이블 검출 기술을 제안하였다. 광 레이블 검출기로 사용한 광 인터리버의 통과포트 (through-pass per)로는 부반송파가 억압되어 기저대 패킷 신호만 출력되며, 광 부반송파 추출포트 (optical SCM extaction port)에서는 기저대 패킷 신호가 억압되기 때문에 부반송파에 실린 레이블만 출력된다. 제안된 구조는 종래의 광 레이블 검출기 구조들에 반드시 필요한 광 서큘레이터를 사용하지 않기 때문에 삽입 손실이 작아 파워 페널티가 낮고 광 인터리버의 주기적인 전달함수 특성 때문에 파장 다중화된 입력 신호로부터 다수 개의 부반송파 채널들을 동시에 추출할 수 있다. 10-GHz SCM 광 레이블 검출기를 제작하여 155-Mb/s ASK변조된 9.79-GHz 부반송파 신호를 성공적으로 검출하였으며, 광 스펙트럼과 BER 측정을 통해 이를 확인하였다.

캡슐내시경 동영상으로부터 학습 데이터 레이블링을 위한 정보 추출 기법 (Information Extraction Method for Labeling Learning Data from the Capsule Endoscopic Video Images)

  • 장현웅;임창남;박예슬;이광재;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.375-378
    • /
    • 2019
  • 최근 딥러닝과 머신러닝 기법이 소프트웨어의 성능 향상에 도움이 되는 것이 입증됨에 따라, 의료 영상 진단 보조 소프트웨어를 개발하기 위한 시도가 활발해 지고 있다. 그 중 캡슐내시경은 소장 소화기관을 관찰할 수 있는 초소형 의료기기로, 기존의 내시경 검사와 다르게 이물감이 느껴지지 않고 의료보험 적용으로 최근 들어 널리 이용되고 있다. 일반적으로 캡슐 내시경은 8 시간 동안 소화기간을 촬영하며, 한 번의 검사 결과로 생성된 동영상 데이터 셋은 수 만장의 이미지를 포함하기 때문에, 방대한 양의 이미지들을 효율적으로 관리하기 위한 체계가 필요하다. 특히, 방대한 양의 캡슐내시경 이미지를 학습하는 경우, 수 만장의 이미지 속에서 유의미한 특징(촬영정보, 의사소견, 환자정보, 병변의 위치 및 크기 등)을 추출해내야 하므로 학습 데이터 레이블링을 위한 정보를 정확히 추출해야 하는 작업이 요구된다. 따라서 본 논문에서는 캡슐내시경 영상을 학습할 때, 학습 데이터 레이블 정보를 체계적으로 구축할 수 있게 하는 레이블 정보 추출 기법을 제안하고자 한다. 제안하는 기법은 병원에서 14년간 수집된 총 340명의 캡슐내시경 데이터(약 1,700 만장의 이미지)를 토대로 영상데이터를 구조적으로 분석하여 유의미한 정보를 추출하고 노이즈 데이터를 제거한 뒤, 빅데이터 저장소에 적재할 수 있음을 보였다.

레이블과 아이콘 이미지가 혼합된 관광지도 생성 시스템 구현 (An Implementation of A Tour Map Generation System with Mixed Label and Icon Image)

  • 류동성;박동규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.600-602
    • /
    • 2003
  • 지리정보시스템에서 사용되는 지도는 사용되는 목적과 활용 분야에 따라 다양한 종류가 있다. 본 논문은 지리정보 시스템을 위한 여러 가지 종류의 지도 중 관광안내 지도를 자동화된 방법으로 생성하는 방법에 관한 논문이다. 이를 위하여 지형도로부터 노선도와 레이블, 아이콘정보 등을 추출하고 분석하여 시각화하였으며, 시각화한 정보들을 편리하게 표현할 수 있는 알고리즘들을 연구하였다. 이때 발생하는 레이블과 아이콘의 중첩을 랜덤화된 재배치 알고리즘을 통하여 개선하였다.

  • PDF

계층적 레이블 임베딩을 이용한 주장-증거 쌍 추출 모델 (Claim-Evidence Pair Extraction Model using Hierarchical Label Embedding)

  • 심유진;김담린;김태일;최성원;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.474-478
    • /
    • 2023
  • 논증 마이닝이란 비정형의 텍스트 데이터에서 논증 구조와 그 요소들을 식별, 분석, 추출하는 자연어 처리의 한 분야다. 논증 마이닝의 하위 작업인 주장-증거 쌍 추출은 주어진 문서에서 자동으로 주장과 증거 쌍을 추출하는 작업이다. 본 논문에서는 효과적인 주장-증거 쌍 추출을 위해, 문서 단위의 문맥 정보를 이용하고 주장과 증거 간의 종속성을 반영하기 위한 계층적 LAN 방법을 제안한다. 실험을 통해 서로의 정보를 활용하는 종속적인 구조가 독립적인 구조보다 우수함을 입증하였으며, 최종 제안 모델은 Macro F1을 기준으로 13.5%의 성능 향상을 보였다.

  • PDF