• 제목/요약/키워드: 레이블

검색결과 541건 처리시간 0.031초

통합자원관리시스템을 이용한 예약 기반의 네트워크 자원 할당 테스트베드 망 (A Reservation based Network Resource Provisioning Testbed Using the Integrated Resource Management System)

  • 임헌국;문정훈;공정욱;한장수;차영욱
    • 한국통신학회논문지
    • /
    • 제36권12B호
    • /
    • pp.1450-1458
    • /
    • 2011
  • 연구망에서 융합망이란 의료, 바이오, 항공우주, e-Science 분야 등의 응용 연구자들에게 슈퍼컴퓨터, 클러스터 등의 컴퓨팅 자원을 네트워크 자원과 동시에 동적으로 제공해 줄 수 있는 환경을 의미한다. 한국을 대표하는 연구망인 KREONET은 2008년도부터 융합망 프로젝트를 통해 다음과 같은 기술을 개발하고 있다. 먼저 이기종 네트워크 환경에서 동적으로 연결 지향형 네트워크를 구성 할 수 있는 제어평면 기술을 제공하고 있으며, 그와 더불어 사용자가 원하는 시간 때에 컴퓨팅 자원 및 네트워크 자원을 예약, 할당해 줄 수 있는 통합자원관리시스템 기술을 개발하고 있다. 본 논문에서는 개발되어진 통합자원관리시스템을 이용허여 네트워크 자원의 예약 및 할당이 가능한 테스트베드 네트워크를 소개한다. 사용자로부터 제공 되어진 예약정보를 받아 GRS와 NRM 간에, NRM와 라우터 간에 각각 GNSI, GUNI 인터페이스 메시지를 통해 네트워크 자원을 예약 할당 할 수 있다. 예약 시각의 시작시점에 NRM으로부터 GUNI 인터페이스 메시지가 각 라우터에 전달되어지고 할당된 LSP (Label Switched Path) 경로를 통해 트래픽이 전송됨을 확인하였다.

트위터의 감정 분석을 통한 실시간 장소 추천 시스템 (Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter)

  • 오평화;황병연
    • 한국전자거래학회지
    • /
    • 제21권3호
    • /
    • pp.15-28
    • /
    • 2016
  • 본 논문에서는 모바일에서 획득한 GPS(Global Positioning System)를 활용하여 사용자의 위치 주변에서 발생한 SNS 데이터를 수집하고 분석을 통해 사용자가 원하는 장소를 추천하는 시스템을 제안한다. 이를 위해 트위터에서 위치정보를 포함하는 게시글을 표본 집합으로 정하고 모바일의 위치정보와 함께 활용했을 때, 사용자의 검색의도에 부합하는 양질의 정보를 제공할 수 있음을 실험을 통해 증명하였다. 이를 위해 2015년 11월부터 12월까지 수집한 트윗(Tweet)을 대상으로 임의의 위치정보와 검색어로 구성된 질의를 구성하고 형태소 분석을 거쳐 분석에 적합한 형태의 데이터로 변환하였다. 또한 장소 추천을 위해 감정사전을 구축하여 긍정 및 부정을 의미하는 극성 키워드들을 정의하고 레이블을 구성한 후, 감정사전과 극성키워드를 이용해 개별 트윗의 추천 점수를 도출하였다. 논문은 추천 점수와 사용자의 현재 위치, 트윗이 작성된 위치와 사용자 위치 사이의 거리 계산을 통해 가까운 거리 순으로 10개의 장소 정보를 정렬하여 결과를 보인다. 또한 성능평가를 위해 감정 분석된 트윗에 대한 정밀도와 재현율을 도출하여 시스템의 성능을 확인한다. 실험은 '맛집', '공연' 2개의 키워드와 10개 지역을 기준으로 수행하였다. 실험 결과 키워드 1개당 수집된 트윗은 평균 10.5개였으며, 총 10번의 실험에 사용된 평균 210개의 트윗 중 긍정 또는 부정의 단어를 포함한 트윗의 개수는 평균 122개였다. 또한 감정 분석을 통해 긍정 또는 부정으로 분류된 트윗은 평균 65개였으며 그 중 실제로 긍정 또는 부정의 의미를 담은 트윗은 평균 46개였다. 이를 통해 시스템은 38%의 재현율로 감정요소를 담은 트윗을 탐지하고, 71%의 정밀도로 감정 분석을 수행했음을 확인했다.

어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑 (Vision-based Mobile Robot Localization and Mapping using fisheye Lens)

  • 이종실;민홍기;홍승홍
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.256-262
    • /
    • 2004
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.

  • PDF

LSTM 모델 기반 주행 모드 인식을 통한 자율 주행에 관한 연구 (Automated Vehicle Research by Recognizing Maneuvering Modes using LSTM Model)

  • 김은희;오혜연
    • 한국ITS학회 논문지
    • /
    • 제16권4호
    • /
    • pp.153-163
    • /
    • 2017
  • 본 연구에서는 운전자 별로 생활 중에 이동하는 주행 도로의 특징 및 교통상황이 서로 다르며 운전습관이 상이함을 고려하여, 운전자 혹은 운전자 그룹별 기계학습모형을 구성하고, 학습된 모델을 분석하여 운전자의 주행모드 별 특징을 탐색하여 자율 주행 자동차를 시뮬레이션 하였다. 운전지식을 활용하여 주행조작 전후 센서의 동작 상황에 따라 8종류의 종방향 모드와 4종류 회전모드로 구분하고, 종방향 모드와 회전모드를 결합한 21개의 결합형 주행모드로 세분화 하였다. 주행모드가 레이블 된 시계열 데이터에 대해 딥러닝 지도학습 모델인 RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), Bi-LSTM 모델을 활용하여서 운전자 별 혹은 운전자 그룹별 주행데이터를 학습하고, 학습된 모델을 테스트 데이터 셋에서 주행 모드인식률을 검증하였다. 실험 데이터는 미국 VTTI 기관에서 수집된 22명의 운전자의 1,500개의 실생활 주행 데이터가 사용되었다. 주행 모드 인식에 있어, 데이터 셋에 대해 Bi-LSTM 모델이 RNN, LSTM 모델에 비해 향상된 성능을 보였으며, 최대 93.41%의 주행모드 인식률을 확인하였다.

확장된 RNN을 활용한 사람재인식 시스템에 관한 연구 (A Study on Person Re-Identification System using Enhanced RNN)

  • 최석규;허문걸
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.15-23
    • /
    • 2017
  • 사람의 빈번한 자세 변화, 그리고 background clutter과 occlusion으로 인해 Person Re-identificatio는 컴퓨터 비전 분야에서 가장 어려운 부분이다. 비겹침 카메라의 이미지는 어떤 사람을 다른 사람과 구별하기 어렵게 한다. 더욱 나은 성능 일치를 달성하기 위해 대부분의 방법은 특징 선택과 거리 메트릭을 개별적으로 사용한다. 그렇게 차별화된 표현과 적절한 거리를 얻을 수 있고, 사람과 중요한 특징의 무시 사이의 유사성을 설명할 수 있다. 이러한 상황은 우리가 이 문제를 다루는 새로운 방법을 고려하도록 한다. 본 논문에서는 Person Re-identification를 위한 3단 계층네트워크를 갖는 향상되고 반복적인 신경 회로망을 제안하였다. 특히 RNN(Revurrent Neural Network) 모델은 반복적인 EM(Expectation Maximum) 알고리즘과 3단 계층 네트워크를 포함하고, 차별적 특징과 지표 거리를 공동으로 학습한다. 반복적인 EM 알고리즘은 RNN 이전에 연속해 있는 CNN(Convoutional Neural Network)의 특징 추출 능력을 충분히 사용할 수 있다. 자율 학습을 통해 EM 프레임 워크는 패치의 레이블을 변경하고 더 큰 데이터 세트를 훈련할 수 있다. 네트워크를 더 잘 훈련시키기 위해 3단 계층 네트워크를 통해 CNN, RNN 및 풀링 계층이 공동으로 특징 추출을 할 수 있다. 실험 결과에 따르면 비전처리 분야에서 다른 연구자의 접근 방식과 비교할 때 이 방법은 경쟁력 있는 정확도를 얻을 수 있다. 이 방법에 대한 다른 요소의 영향은 향후 연구에서 분석되고 평가될 것이다.

k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구 (Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model)

  • 함석우;전성식
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) 보는 하중 유형에 따라 구간을 나누어, 각 구간마다 하중 유형에 강한 복합재료의 적층 순서를 배열한 보이다. 본 연구는 PIC 보의 구간을 머신 러닝의 일종인 k-NN(k-Nearest Neighbor) 분류를 통해 나누어 기존에 제시되었던 PIC 보에 비해 우수한 굽힘 특성을 갖게 하는 것이 목적이다. 먼저, 알루미늄 보의 3점 굽힘 해석을 통하여 참조점에서의 3축 특성(Triaxiality) 값 데이터를 얻었고, 이를 통해 인장, 전단, 압축의 레이블을 가진 학습 데이터가 만들어진다. 학습 데이터를 통해 각 면마다 독립적인 k-NN 분류 모델을 구성하는 방법(Each plane)과 전체 면에 대한 k-NN 분류 모델을 구성하는 방법(one part)을 이용하여 k-NN 분류 모델을 생성하였고, 하이퍼파라미터의 튜닝을 통하여 다양한 하중 충실도를 도출하였다. 가장 높은 하중 충실도를 가진 k-NN 분류 모델을 기반으로 보를 매핑(mapping)하였고, PIC 보에 대하여 유한요소 해석을 진행한 결과, 기존에 제시되었던 PIC 보에 비해 최대하중과 흡수 에너지가 커지는 특성을 보였다. 하중 충실도를 수동으로 조절하여 100%로 만든 PIC 보와 비교하였을 때, 최대하중과 흡수에너지가 미소한 차이가 나타났으며 이는 타당한 하중 충실도로 보여진다.

스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑 (Mobile Robot Localization and Mapping using Scale-Invariant Features)

  • 이종실;신동범;권오상;이응혁;홍승홍
    • 전기전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.7-18
    • /
    • 2005
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다 본 논문에서는 스케일 불변 특정을 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특정을 갖는 고급의 영상 특정을 구하여 맹 빌딩과 위치 추정을 수행한다. 먼저, 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 적용하여 천정영역과 벽영역으로 분할한다 최초 맵 빌딩시에는 분할된 영역에 대해 특정점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특정점들을 구하고 이미 작성된 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맴에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩과정에서 매칭되는 점들을 찾을 때 동시에 수행되어 진다. 그리고 임의의 위치에서 기존의 작성된 맵과 매칭되는 점들을 찾음으로서 위치 추정이 행해지며 동시에 기존의 맵 데이터베이스의 특정점들을 갱신하게 된다. 제안한 방법은 $50m^2$의 영역에 대해 맵 빌딩을 2 분내에 수행할 수 있었으며, 위치의 정확도는 ${\pm}13cm$, 위치에 대한 로봇의 자세(각도)는 ${\pm}3$도의 오차를 갖는다.

  • PDF

타이어 분류 코드의 효율적 인식을 위한 MCBP망 (MCBP Neural Netwoek for Effcient Recognition of Tire Claddification Code)

  • 구건서;오해석
    • 한국정보처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.465-482
    • /
    • 1997
  • 본 논문은 타이어에 각인된 타이어 분류 코드인(DOT(Department of Transportation) 코드 인식 처리를 위해 타이어 문자를 영상 처리한 후 신명망을 이용하여 인식 시스템을 구축한 것이다. 타이어에 각인된 문자부분을 영상 처리시, 타이어 표면에 각인된 문자가 조명에 민감한 반응을 보일 뿐아니라 난반사로 인한 문자 경계선이 왜곡되는 현상과 인접한 두 개의 문자가 한 레이블을 갖는 현상이 발생된다. 따라서 본 논문에서는 이러한 특성을 고려한 타이어 영상 처리 알고리즘을 제안하여 실헝을 통해 유효성을 증명하였다. 또한 타이어분류 코드인DOT 코드를 효율적으로 인식하기 위해 인식기를 다중 연결한 MCBP(Multi-Chained BackPropogation)망을 제안하였다. MCBP망에서는 타이어 개별 문자영역에 대한 X, Y축 투영 값을 추출하여 문자 영역 분류를 위한 특징 값과 가로, 세로 7$\times$8 정규화를 이용한 개별 문자의 특징을 추출하여 인식 처리한다. 본 논문에서는 MCBP망에 의해 인식된 결과와 DOT 코드 데이터 베이스를 비교 처리하는 후처리를 통해서 오인식율을 3% 줄였다. 학습 및 인식 결과는 단일 역전파망에 비해 학습시간에서는 60%의 개선과 효과를 얻었으며, 인식율은 90%에서 95%로 향상었다. 또한 후처리까지 포함하면 전체 인식율을 98%까지 증가되는 높은 인식율을 얻을 수 있었다.

  • PDF

Metal Mask 검사시스템 (Inspection System for The Metal Mask)

  • 최경진;이용현;박종국
    • 전자공학회논문지SC
    • /
    • 제40권2호
    • /
    • pp.1-9
    • /
    • 2003
  • 본 논문에서는 ASC(Area Scan Camera)를 이용한 비젼시스템과 belt type xy-table을 사용하여 metal mask의 홀 생성유무 검사시스템을 개발하고, 적용할 수 있는 알고리즘을 소개한다. Metal mask의 전체 영역을 일정한 크기의 검사영역으로 분할한다. 각각의 검사영역의 크기는 ASC의 FOV(Field of View)와 동일하다. 이때 belt type xy-table에서 발생하는 위치오차를 고려하여 일정영역을 중첩하여 분할한다. 검사블록에 대한 카메라이미지는 gerber 파일을 이용하여 생성한 기준이미지와 비교된다. 검사장치에 장착된 metal mask의 회전각도를 계산하기 위하여 존재하는 가장 큰 홀에 대한 카메라이미지를 획득하고, 홀의 수평 에지를 추출한 후 직선의 방정식을 이용한다. Belt type xy-table의 backslash와 같은 기계적 결함에 의해 기준 이미지와 카메라이미지에 존재하는 홀 사이에는 위치오차가 존재한다. 두 이미지를 일치시키기 위해 각 이미지에 존재하는 홀의 무게중심점을 이용한 HT(Hough-Transform)을 사용하여 위치오차정보를 추출하고, 기준이미지의 중심점을 이동시킨다. 각각의 이미지에 존재하는 홀에 대한 무게중심점, 면적, 가로길이, 세로길이 등의 정보를 레이블링을 통하여 구한다. 두 이미지에 존재하는 홀의 무게중심점과 면적을 이용하여 홀의 생성 유무를 판단한다. 그리고 실제로 시스템을 제작하여 위 알고리즘을 적용한다.

드론 영상의 차량 레이블링을 통한 간선도로 차간간격(GAP) 산정 (GAP Estimation on Arterial Road via Vehicle Labeling of Drone Image)

  • 진유진;배상훈
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.90-100
    • /
    • 2017
  • 본 연구에서는 기존 지점 및 구간 검지체계의 한계를 극복하기 위한 방편으로 드론 촬영영상을 활용하여 차량을 검지 및 레이블링 하고 이를 기반으로 도심부 간선도로상 차간간격을 산정하는 것을 목적으로 한다. 드론 영상 데이터 획득 시 적정 시간대, 위치, 고도를 선정하기 위하여 여러 조건하에서 촬영을 실시하여 최종 영상 데이터를 획득하였다. 다양한 영상분석기법 중 혼합 Gaussian, 영상 이진화, 모폴로지 기법을 적용시켜 차량을 검지하였고 칼만 필터를 적용하여 차량을 레이블링 하였다. 레이블링율 분석 결과 실제 차량 수 285대 중 185대를 검지함으로써 차량 레이블링율은 65%로 나타나는 것을 확인하였다. 차간간격은 픽셀 단위화를 통해 산정하였으며, 결과는 다음 지도와의 비교 분석을 통해 검증을 수행하였다. 검증 결과 차간간격 오차가 모두 5m 미만으로 나타났으며 평균 오차는 선행차량과의 차간간격은 1.67m, 후행차량과의 차간간격은 1.1m로 분석되었다. 본 연구에서 산출된 차간간격은 도심부 도로의 밀도, 서비스 수준 판단 기준 설정 등으로 활용될 수 있을 것이다.