The tracking radar systems in NARO space center are used in order to acquire the TSPI (Time, Space, and Position Information) data of the launch vehicle. The tracking radar produce the measurements of tracked targets in the radar-centered coordinate system. When the tracking radar is in the Cartesian/Polar tracking mode, the state vector data is sent in radar-centered Cartesian/Polar coordinate system to RCC. RCC also send the slaving data in Test Range coordinate system to the tracking radar. So, the tracking radars have to transform the slaving data in Test Range coordinate system into in radar-centered coordinate system. In this study, we described the coordinate transformation between radar-centered coordinate system and Test Range coordinated system.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.394-396
/
2007
본 논문은 레이더를 통해 입력받은 데이터를 분석하여 같은 물체에 관한 데이터를 구분하는 방법을 제시한다. 큰 영역을 감시하는 레이더에 비해 영역이 좁을 때 레이더는 한 물체에 대해서 물체 형태에 따라 데이터가 들어오게 된다. 이 데이터들은 같은 물체인지 아닌지 구분이 없어서 응용된 알고리즘을 적용하기 힘들다. 따라서 응용된 알고리즘을 적용하기 전 하나의 물체에 대한 데이터의 그룹핑 작업이 필요하다. 본 논문에서 그룹핑 방법을 제시하며 실제 도로에서 취득한 데이터를 가지고 시뮬레이션을 하였다.
An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.43-45
/
2021
The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.21-21
/
2017
최근 서울, 부산, 울산 등에서 도시 돌발홍수가 빈번히 발생하고 있고 이에 따른 인명 손실 및 재산 피해가 빠르게 증가하고 있다. 그러나 집중 호우의 대부분은 저고도 대기에서 생성 및 발달되며, 소멸까지의 시간은 2-3 시간에 불과하여 기존의 우리나라 수문기상 관측시스템은 이러한 유형의 강우량 예측에 많은 어려움을 겪고 있는 실정이다. 이 문제를 해결하기 위해 기상, 재난 관련 정부 기관들이 저고도 수문기상 관측을 위한 도시형 X-밴드 레이더 네트워크 구축을 계획하고 있다. 본 연구의 목적은 그보다 선행하여 돌발성 수문기상 재해연구를 위해 한국건설기술연구원에서 도입한 X-band 이중 편파 레이더 시스템을 이용하여 보다 간단하고 정확한 재난 감시 및 예경보 시스템을 개발하는데 있다. 본 연구에서는 X-밴드 레이더 데이터로부터 추정된 정량적 강수량을 모니터링 하여 도시 지역의 돌발홍수를 자동으로 경고하는 방법을 제안한다. 또한 Google 어스 플랫폼을 사용하여 정확한 3D QPE-GIS 매칭 기법을 개발함으로써, 심각한 수문기상 현상이 발생하는 정확한 위치를 추적하고 직관적인 경보서비스를 가능케 한다. 본 연구에서 제안하는 경보시스템은 레이더 데이터 분석도구, 위험결정 도구 및 위험경고 표시 도구의 세 가지 기술로 구성된다. 제안된 돌발홍수 경보시스템은, 시뮬레이션을 통해 X-밴드 레이더 데이터로부터 정량적 강수량이 계산되며, GIS 상에서 레이더 반사도 및 강우강도가 3차원 이미지 형태로 표시된다. 그런 다음 Google 어스에서 3D 큐브 블록으로 대표되는 강수량이 동시에 누적표출 되도록 설계되었다. 또한 분석된 X-밴드 레이더 데이터로부터 지역별 누적 강수량을 업데이트 및 모니터링하고 기 설정된 돌발홍수 발생 한계치(trigger)에 도달하면 홍수경보 메시지를 표시한다. 향후, 제안된 경보시스템에 대한 기술적 도구를 개선하면서 대규모 수문기상 레이더 네트워크로 광범위한 강우를 모니터링하면 전국적인 돌발홍수 경보시스템으로 확대가 가능하다.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.5
/
pp.90-96
/
2017
Due to the merit of having wide range with low cost, HF radar's ship detection and tracking research as maritime surveillance system has been recently studied. Many ship detection and tracking algorithms have been developed so far, however, performance comparison cannot be conducted properly because the states of target ships (such as moving path, size, etc.) differ from each study. In this paper, we propose a simulator based on compact HF radar, which generates data according to the size and moving path of target ship. Given the generated data with identical ship state, it is possible to conduct performance comparison. In order to validate the proposed simulator, the simulated data has been compared with real data collected by the SeaSonde HF radar sites. As a result, it has been shown that our simulated data resembles the real data. Therefore, the performance of various detection or tracking algorithms can be compared and analyzed respectively by using our simulated data.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.4
/
pp.360-365
/
2014
There are many types of advanced devices for weather prediction process such as weather radar, satellite, radiosonde, and other weather observation devices. Among them, the weather radar is an essential device for weather forecasting because the radar has many advantages like wide observation area, high spatial and time resolution, and so on. In order to analyze the weather radar observation result, we should know the inside structure and data. Some non-precipitation echoes exist inside of the observed radar data. And these echoes affect decreased accuracy of weather forecasting. Therefore, this paper suggests a method that could remove line-shaped non-precipitation echo from raw radar data. The line-shaped echoes are distinguished from the raw radar data and extracted their own features. These extracted data pairs are used as learning data for naive bayesian classifier. After the learning process, the constructed naive bayesian classifier is applied to real case that includes not only line-shaped echo but also other precipitation echoes. From the experiments, we confirm that the conclusion that suggested naive bayesian classifier could distinguish line-shaped echo effectively.
Journal of Korea Society of Industrial Information Systems
/
v.5
no.3
/
pp.44-50
/
2000
This paper presents the effective data processing system of a transportable meteorological radar(DWSR-200x). Transportable meteorological radar is useful as it can be moved to target area for special purpose. First of all, to use this radar effectively, it is desirable that the data transmitting should be taken place between the radar system and the data center located in a distance. From this raw data we can analyze the property of atmosphere, as well as sore and display the demanded shape of users. In this paper, we make use of wireless LAN that communicates the data between the radar system and the information center. And the display program of transportable radar is developed with transmitted data. It provides meteorologists with the echo searching function in real time and dictionary faculty using the graphic and multimedia data.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.25
no.4
/
pp.467-475
/
2014
In this paper, we introduce a sparse recovery algorithm applied to a radar signal model, based on the compressive sensing(CS), for the formulation of the radar signatures, such as high-resolution range profile(HRRP) and ISAR(Inverse Synthetic Aperture Radar) image. When there exits missing data in observed RCS data samples, we cannot obtain correct high-resolution radar signatures with the traditional IDFT(Inverse Discrete Fourier Transform) method. However, high-resolution radar signatures using the sparse recovery algorithm can be successfully recovered in the presence of data missing and qualities of the recovered radar signatures are nearly comparable to those of radar signatures using a complete RCS data without missing data. Therefore, the results show that the sparse recovery algorithm rather than the DFT method can be suitably applied for the reconstruction of high-resolution radar signatures, although we collect incomplete RCS data due to unwanted interferences or jamming signals.
Journal of Korean Society for Geospatial Information Science
/
v.17
no.3
/
pp.97-107
/
2009
Experiments using real guided weapons for the development of the LADAR(Laser radar) are not practical. Therefore, we need computing environment that can simulate the 3D detections by LADAR. Such simulations require dealing with large sized data representing buildings and terrain over large area. And they also need the information of 3D target objects, for example, material and echo rate of building walls. However, currently used 3D models are mostly focused on visualization maintained as file-based formats and do not contain such semantic information. In this study, as a solution to these problems, a method to use a spatial DBMS and a 3D model suitable for LADAR simulation is suggested. The 3D models found in previous studies are developed to serve different purposes, thus, it is not easy to choose one among them which is optimized for LADAR simulation. In this study, 4 representative 3D models are first defined, each of which are tested for different performance scenarios. As a result, one model, "Body-Face", is selected as being the most suitable model for the simulation. Using this model, a test simulation is carried out.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.6
/
pp.79-85
/
2019
Recently, small radar require the development of small millimeter wave radar with high distance resolution to disable the target's system with a single strike. Small millimeter wave radar with high distance resolution need to process large amounts of data in real time to acquire and track target. In this paper, we summarized the real-time data preprocessing method to process the large amount of data required for small millimeter wave radar. In addition, the digital IF(Intermediate Frequency) receiver, Window processing, and, DFT(Discrete Fourier Transform) functions presented by real-time data preprocessing are implemented using FPGA(Field Programmable Gate Array). Finally the implemented real-time data preprocessing module was applied to the signal processor for small millimeter wave radar and verified by performance test related to the real-time preprocessing function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.