• Title/Summary/Keyword: 레이더 강우 추정

Search Result 163, Processing Time 0.028 seconds

Quantitative Precipitation Estimation using Overlapped Area in Radar Network (레이더의 중첩관측영역을 활용한 정량적 강수량 추정)

  • Choi, Jeongho;Han, Myoungsun;Yoo, Chulsang;Lee, Jiho
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.112-121
    • /
    • 2017
  • This study proposed the quantitative precipitation estimation method using overlapped area in radar network. For this purpose, the dense rain gauges and radar network are used. As a result, we found a reflectivity bias between two radar located in different area and developed the new quantitative precipitation estimation method using the bias. Estimated radar rainfall from this method showed the apt radar rainfall estimate than the other results from conventional method at overall rainfall field.

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

Analysis of behavior by duration of extreme rainfall based on radar precipitation data (레이더 강수 데이터 기반 극한 강우의 지속시간별 거동 분석)

  • Soohyun Kim;Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.116-116
    • /
    • 2023
  • 대규모 댐과 같은 수공구조물의 파괴시 상당한 피해가 발생하므로 구조물설계시 가능최대강수량(PMP) 기준이 적용된다. 포락선 방법은 가장 극심했던 강우량의 포락선을 작성하여 PMP를 산정하는 방법으로 기상 및 강수량자료가 부족시 PMP 추정이 어려운 경우에 사용한다. 포락선의 근사식은 지속시간의 거듭제곱인 멱함수 형태로 나타내며, 우리나라의 경우 1일을 전후로 계수와 차수가 다른 식을 사용한다. 이러한 근사식은 우리나라의 이상홍수 발생빈도 및 규모가 커짐에 따라 검토될 필요성이 있다. 또한, PMP 산정시 활용하는 제한된 수의 지상관측자료는 시공간적 변동성을 완전히 포착할 수 없어 한계가 있다. 본 연구는 이러한 한계를 극복하기 위하여 기상레이더 자료를 기반으로 우리나라 전역의 최대 강우깊이-지속시간 관계를 분석 및 새로운 PMP 포락선을 제시한다. 활용한 레이더는 CMAX(Column Maximum)로 2009~2018년간 10분 단위자료를 수집하였다. 레이더 자료와 비교하기 위하여 지상관측자료 AWS를 함께 수집하였다. AWS는 1997~2022년간 1분 단위자료로 우리나라 전역의 547개 지점관측자료를 활용하였다. 레이더자료는 Z-R 관계식으로 변환하여 가외치(outlier)를 제거 및 보정하였다. 그 후, 정규 크리깅기법으로 생성한 지상관측 강우장과 병합하는 CM(Conditional Merging)기법을 적용하였다. 우리나라 최대 강우깊이-지속시간 관계를 산정한 결과, 기존 포락선의 값이 낮게 산정되었음을 확인하였다. 이는 기후변화 등에 따라 최근 극한 호우가 발생한 것으로 판단된다. 또한, 실제 근사식은 멱함수 거동에서 벗어난 형태로 나타났고, 지점관측자료가 기상레이더 값보다 과소추정되는 경향을 확인하였다. 특히 같은 기간에서 확인하였을 때, 강우지속시간이 짧을수록 AWS값과 레이더자료의 강수량이 2배 정도 차이를 보여 지점관측소가 없는 지역의 국지성 호우 존재를 확인할 수 있었다. 추후, 미래에 더 긴 레이더 시계열을 사용한다면, 더욱 신뢰성 있는 자료로 활용할 수 있을 것으로 판단한다.

  • PDF

Estimation of Storm-centered Areal Reduction Factors by Durations and Return Periods Using Radar Rainfall (지속시간 및 재현기간에 따른 레이더 강우 호우중심형 ARF의 산정)

  • Kim, Eunji;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.163-163
    • /
    • 2017
  • 설계홍수량은 수공구조물의 규모를 결정하는데 이용되며, 국내에서는 설계홍수량을 산정하기 위하여 지속시간과 재현기간에 따라 면적강우량을 추정한다. 지점강우량은 제한된 지역을 대표하는 값이므로 지점강우량을 기준면적에 대한 면적강우량으로 환산하기 위하여 면적우량환산계수(ARF, Areal Reduction Factor)를 적용한다. ARF를 산정하는 방법은 과거 관측자료를 활용하여 산정하는 경험적 방법(empirical method)이 주를 이루고 있으며, 경험적 방법은 크게 면적고정형(Fixedarea) 방법과 호우중심형(Storm-centered) 방법으로 분류된다. 면적고정형 방법은 국내 하천설계 기준에서 적용하고 있는 방법으로 면적강우 및 지점강우의 연 최대치를 독립적으로 빈도 해석하여 ARF를 산정하므로 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형 방법은 각각의 강우사상을 분석 대상 유역 중심에 공간 전이시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우를 활용하면 실제 강우사상의 공간분포 특성을 반영한 현실적인 ARF 산정이 가능하다. 본 연구에서는 국내 기상청에서 제공하는 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하여 지속시간 1, 3, 6, 12, 24시간에 대한 호우중심형 ARF를 산정하였고, 면적강우 산정 시, 강우사상의 면적을 원형 또는 타원형으로 선정하여 강우의 형상 및 방향성을 고려하였다. 또한 레이더 강우의 중심강우를 지상강우 자료로 산정된 확률강우량 기준으로 분류하여 재현기간별 호우중심형 ARF를 산정하였으며, 이를 통해 기준면적, 지속시간, 재현기간에 따른 ARF의 특성을 분석하고자 하였다.

  • PDF

Generation of radar rainfall ensemble using probabilistic approach (확률론적 방법론을 이용한 레이더 강우 앙상블 생성)

  • Kang, Narae;Joo, Hongjun;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.155-167
    • /
    • 2017
  • Accurate QPE (Quantitative Precipitation Estimation) and the quality of the rainfall data for hydrological analysis are very important factors. Especially, the quality has a great influence on flood runoff result. It needs to know characteristics of the uncertainties in radar QPE for the reliable flood analysis. The purpose of this study is to present a probabilistic approach which defines the range of possible values or probabilistic distributions rather than a single value to consider the uncertainties in radar QPE and evaluate its applicability by applying it to radar rainfall. This study generated radar rainfall ensemble for the storms by the typhoon 'Sanba' on Namgang dam basin, Korea. It was shown that the rainfall ensemble is able to simulate well the pattern of the rain-gauge rainfall as well as to correct well the overall bias of the radar rainfall. The suggested ensemble technique represented well the uncertainties of radar QPE. As a result, the rainfall ensemble model by a probabilistic approach can provide various rainfall scenarios which is a useful information for a decision making such as flood forecasting and warning.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

Development of Radar Rainfall Tracking Technique for the Short-Term Rainfall Forecasting (초단기강우 예측을 위한 기상레이더 강우장 추적기법 개발)

  • Kim, Tae-Jeong;So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.2-2
    • /
    • 2015
  • 최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 기존 지상 기상관측소로부터 얻어지는 직접탐측 자료보다는 기상레이더와 위성영상 등 원격탐측 자료를 사용한 수문분야의 연구가 활발하게 진행되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강수현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측 유역을 통과하는 국지적인 호우현상이나 강우장의 이동 및 변화의 파악도 빠른 시간에 가능한 장점이 있다. 본 연구는 기상레이더 공간적 분포와 지상관측소(AWS 및 ASOS) 자료를 연계한 통계적 레이더 강수량 추정(Quantitative Precipitation Estimation, QPE)과 레이더 강수장을 직접 추적하는 강수장 예측(Quantitative Precipitation Forecast, QPF)를 연계한 해석방안을 수립하였으며, 모형 적용과정은 다음과 같다. 첫째, 강우장의 공간적인 이동을 고려하기 위해 강우장으로 부터 이류(advection)패턴을 추출하여 각 강우세포가 가지는 이동방향 및 이동속도를 고려한 강우장 추적기법을 통하여 2시간의 선행시간을 가지는 강우장을 예측하고자 한다. 둘째, 과거 기상레이더 이미지와 지상관측소의 강수 특성을 파악한 후 앞서 예측된 레이더강우장의 형태와 가장 유사한 과거 레이더강우장과 동일 시간대에 지상관측소 강수시계열을 시나리오 형태로 구축한다. 본 연구를 통하여 개발된 기상레이더 영상 이미지 상관분석 기법을 활용한 초단기강우예측은 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능하다. 즉, 수문모형과 연계한 고해상도 단기홍수 예측기술 적용이 가능할 것으로 판단되며, 향후 실시간 재해 예 경보에 활용성을 평가하고자 한다.

  • PDF

Rainfall Estimation Using Meteorological Satellite Image and Conditional Merging Method (기상위성과 조건부 합성기법을 이용한 면적강우량 산정 및 평가)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Yun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.390-390
    • /
    • 2011
  • 본 연구는 기초기술연구회의 위성정보 활용 지원 운영사업(과제명: 위성영상을 이용한 하천정보 생산 및 활용에 관한 연구)의 연구비 지원에 의해 수행되었습니다. 지난 2010년 6월 발사된 천리안 위성이 약 9개월간의 정지궤도 시험운행을 마치고 본격적으로 위성자료 서비스를 시작함에 따라 한반도 악기상 관측 및 예측 정확도 향상에 기여할 것으로 예상된다. 최근 기후분야 외에도 수자원, 방재, 농업, 해양 등 다양한 응용분야에서 기상위성을 활용하고자 하는 연구가 수행되고 있으며 자료제공 시간의 단축과 기상자료 산출물의 제공으로 천리안 위성은 향후 광범위하게 활용 될 것으로 예상된다. 본 연구는 천리안 위성의 수자원 분야 활용을 위한 기반연구로 천리안 위성과 동일한 채널 특성을 보유한 MTSAT-1R 기상위성을 이용하여 면적강우량을 추정하고 이를 지상관측소를 이용하는 강우보정기법에 적용하며 강우산정 결과를 레이더 및 티센, 크리깅 등과 비교하였다. 강우추정은 NOAA NESDIS의 Power-law 공식을 이용하였으며 지상관측소를 이용한 강우보정은 조건부 합성기법을 적용하였다. 연구대상 유역은 충주댐 유역과 충주댐 유역 상류에 위치한 영월수위표 지점 상류유역을 대상으로 하였으며 레이더 차폐에 따른 레이더 강우량의 감쇄 효과를 분석하고 지형적 특성에 영향 받지 않는 기상위성을 이용한 강우량 산정 기법의 활용성을 제시하였다. 연구결과 레이더 차폐에 영향 받지 않는 영월 수위표 상류유역의 경우 레이더를 이용한 강우량 산정결과와 기상위성을 이용한 결과가 큰 차이가 없으나 전체 유역면적의 절반 정도가 레이더 차폐 지역에 포함되는 충주댐 유역의 경우 레이더를 이용할 경우 20%~35% 가량 강우량이 과소 추정되는 것으로 나타났다. 본 연구를 토대로 산악지형에 의해 레이더 차폐가 발생되는 유역에 대해 기상위성의 활용을 기대할 수 있을 것으로 판단되었다.

  • PDF

Estimation of optimal CAPPI grid size using rainfall-runoff model (강우-유출 모형을 이용한 CAPPI의 적정 격자크기 추정)

  • Lee, Won-Geun;Kim, Soo-Young;Jung, Young-Hun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.43-46
    • /
    • 2010
  • 본 연구는 강우-유출모형을 이용하여 레이더 반사도(CAPPI)의 격자 크기에 따른 유출량 오차를 추정하여 적절한 레이더 격자망 크기를 알아보고자 한다. 현재 레이더 격자 크기의 선정 기준은 명확하게 결정되어 있지 않지만, 통상적으로 바람의 영향을 고려하여 격자크기를 4km ${\times}$ 4km를 선정하고 있다. 이런 격자 크기의 결정방법은 바람의 영향만을 고려하였기 때문에 수문학적 적용에 있어 한계점을 가지고 있다. 따라서 강우-유출모형인 SWAT을 이용하여 레이더 격자의 크기를 변화에 따른 유출량의 영향을 파악하고자 한다.

  • PDF

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.