Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.200-203
/
2006
지역의 공간 분포가 내포된 고해상도의 지상강우량을 추정하기 위해서 강수와 구름 입자(고체와 액체)의 양과 성질을 반영한 기상레이더의 반사도(reflectivity) 자료로부터 지상강우강도로 환산하는 방법이 널리 이용된다. 반사도 (reflectivity) 자료로부터 지상강우강도로 환산하는 핵심은 Z-R 관계식으로, 이 Z-R 관계식의 매개변수 a와 b의 결정이 중요하다. 그러나, 지상우량 관측소에서 측정되는 강우량 자료는 지상에서 관측된 강우자료이나, 레이더에서 추정되는 강우량은 상공 (이 연구에서는1.5km)에서 관측한 반사도로 추정되는 값으로 이에 상응하는 오차를 줄이기 위하여 보정하는 기법이 이용된다. 수계내의 정확한 유출량을 모의계산하기 위하여 수문수치모형이 이용되며, 이의 보다 정확한 수치결과를 모의하기 위해서 레이더 강우추정을 사용하여 정확도를 높이고자 하는 연구가 진행 중이다. 이 연구에서는 기상청에서 운영하는 레이더 반사도 자료를 사용하여 용담/남강유역 내에서 2002-2004년의 집중호우에 대해 Z-R 관계식을 추정하고, 유역 내 평균 강우량과 지상관측 강우량의 비 (G-R비)를 이용한 공간적 특성을 고려한 보정을 함으로써 추정된 평균 강우량의 정확도를 향상시켰다. 이렇게 추정된 레이더 강우는 지상관측지점 강우만으로 보간 된 강우(gauge-only interpolation)와 비교 되어, 레이더강우의 정확성과 적용성이 수문모형에 적합한가를 평가해 보았다. 공간적 분포의 특성을 내포하며 강우예측 (Quantitative Precipitation Forecasting)에 이용될 수 있다는 잇점은 있으나, 레이더 강우 추정은 정확성과 적용성에 많은 의문점을 남긴다.리 전도도 값을 Gardner 식에 적용하여 1, 3, 5, 7kPa에서의 불포화수리 전도도 값을 17개 토양통을 대상으로 하여 구했다. 토양수분 potential이 3kPa에서는 물의 이동이 거의 없는 토양들이 있었는데 반해 남계통을 비롯한 학곡통, 회곡통, 백산통, 상주통, 석천통, 예산통 등 7개의 토양은 3kPa에서도 약간의 물의 이동이 있었다. 이는 모암이 화강 편마암인 관계로 토양 내에 물의 이동에 영향을 미치는 자갈의 함량이 높았기 때문일 것으로 생각되고 추후의 연구에서는 이 부분에 대한 내용도 검토되어야 할 것이다. 또한, 1kPa에서 물의 이동은 삼각통에서 35.21 cm/day로 이동 속도가 가장 컸으며 그 뒤로 예산통, 화봉통, 학곡통, 백산통 등이 토양에서 빠른 속도로 이동하였다. 가천통이나 석천통 및 우곡통은 1kPa에서의 이동 속도가 아주 느린 토양으로 판단되었다. 또한, 포화되지 않은 상태인 1kPa에서 물의 이동 속도를 VGM 모형에 의해 예측된 값과 측정된 값으로 비교하였을 때 불포화 수리 전도도가 예측되지 않은 토양(석천통, 지곡통, 풍천통)이 존재하여 불포화 수리 전도도 특성평가에 대한 VGM 모형의 적용성에 문제를 보였다. 이는 결과적으로 논이라는 영농형태가 존재하는 우리나라에서 토양의 수리적 특성해석을 위한 VGM 모형의 적용성에 한계가 있을 것으로 판단되었다.4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.61-61
/
2019
우리나라는 대부분이 산지(약 65%)로 구성되어 있어 강우 시 그 공간적 분포의 변동성이 매우 큰 편이며, 특히 전형적인 산지지형인 댐 유역의 경우 고도 변화 등에 기인한 지형특성 등에 따라 강우의 형태 및 패턴과 이에 따른 유출변화가 큰 복잡한 특성을 갖는다. 이로 인해 단순히 지점강우들을 공간보간(평균)한 면적강우를 홍수 유출모의 등에 활용할 경우 그 신뢰도가 매우 낮은 경우가 많아, 수문모의에 있어 레이더에 기반을 둔 공간 분포형 강우 등의 도입 검토가 요구된다. 한편, 최근 기상청에서는 보다 정확한 레이더 강수량 추정 값의 제공을 위해 "레이더-AWS 강우강도(Radar-AWS Rainrates, RAR)" 산출 기술을 지속적으로 개선하고 있으며, 이는 지상 우량계 대비 상당한 정확도를 보이고 있다. 본 연구에서는 국내 산지지형을 대표하며, 타 댐 유역에 비해 비교적 수문(수위/유량)관측소와 자료가 많은 용담시험유역에 기상레이더 강수량 추정 값(RAR)을 적용해 산지지형 댐 유역에서 강우의 시공간적 변동성과 이에 따른 홍수량의 정확한 분석을 통해 홍수 시 댐 유입량의 정확한 산정 등에 활용할 목적으로 홍수 유출모의를 수행하고자 한다. 모의에는 최근 5년(2014~2018년)동안 발생한 비교적 독립적인 1~2개(연도별)의 홍수사상을 적용하였으며, 모형은 분포형 강우를 적용할 수 있는 비교적 간단한 모형인 HEC-HMS를 활용하였다. HEC-HMS는 주로 집중형 수문모형(Lumped Hydrologic Model)으로 분류되어 레이더 강우와 같은 분포형 자료의 입력을 주로 적용치는 않고 있지만, HEC-GeoHMS와 ModClark 방법을 활용하면 격자단위의 분포형 강우를 적용할 수 있는 형태의 모델 구축이 가능하다. 모의 결과는 기존 유역평균 강우를 적용한 방법과 비교를 통해 그 개선점을 검토하고자 하며, 이를 통하여 산지지역 댐 유역의 홍수특성을 보다 더 정확하게 분석해보고자 한다. 한편, ModClark을 적용한 홍수 유출모의는 단순히 소유역별 도달시간의 격자별 비율을 고려한 홍수추적으로 그 해석상의 한계가 있어, 최근 개발된 하이브리드 수문모형(Hybrid Hydrologic Model, Distributed-Clark) 등도 동일유역에 대해 도입 적용할 계획에 있다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.78-78
/
2015
조기에 홍수 위험을 예측하고, 빠르게 이동 또는 진화하는 강수 사상을 추적하기 위해서는 높은 시간 해상도의 실시간 강우 생산이 필요하다. 레이더는 순간 강우강도를 측정하기 때문에, 긴 시간 간격의 관측 주기는 빠르게 움직이는 폭풍의 레이더 QPE에 상당한 샘플링 오차가 발생하기 쉽다. 따라서 본 연구에서는 레이더 관측주기에 따른 강우량의 정량적 차이에 대한 검증을 실시하였다. 본 검토는 2013-2014년 한국건설기술연구원(KICT) X-Band 이중편파레이더로 관측된 사상을 대상으로 하였다. 최소 관측주기(관측전략에 따른 최소 관측주기)를 토대로 샘플링을 하여 긴관측주기 자료를 생산하였다. 비교결과, 약 5분 관측주기에서도 5 % 이상의 차이를 보이는 경우가 상당수 있었다. 이 결과를 토대로 보면 도시홍수 관측을 위해서는 대략 1-2분 정도의 관측주기를 유지해야 하는 것으로 나타났다.
Kim, Kwang-Ho;Lee, Gyuwon;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Han, Kun-Yeun
Journal of the Korean earth science society
/
v.35
no.2
/
pp.115-130
/
2014
The growing possibility of the disaster due to severe weather calls for disaster prevention and water management measures in South Korea. In order to prevent a localized heavy rain from occurring, the rainfall must be observed and predicted quantitatively. In this study, we developed an adjustment algorithm to estimate the radar precipitation applying to the local gauge correction (LGC) method which uses geostatistical effective radius of errors of the radar precipitation. The effective radius was determined from the errors of radar rainfall using geostatistical method, and we adjusted radar precipitation for four heavy rainfall events based on the LGC method. Errors were decreased by about 40% and 60% in adjusted hourly rainfall accumulation and adjusted total rainfall accumulation for four heavy rainfall events, respectively. To estimate radar precipitation for localized heavy rain events in summer, therefore, we believe that it was appropriate for this study to use an adjustment algorithm, developed herein.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.246-246
/
2017
서울과 같은 대도시 지역은 인구와 산업이 집중되어 있기 때문에 작은 규모의 수재해로도 큰 피해를 입을 수 있다. 또한 국지적으로 발생하는 집중호우는 도시 지역에 돌발홍수를 일으킬 수 있기 때문에 국지 예보는 도시 지역에서 매우 중요한 역할을 하고 있다. 레이더는 먼 거리에서의 악기상을 빠르게 관측할 수 있기 때문에 도시 지역 수재해 방지에 큰 역할을 할 것으로 기대되고 있다. 특히 X 밴드레이더는 높은 시공간 해상도의 관측 자료를 제공하고 있어 도시 지역에 적합한 레이더로 알려져 있다. 국내에는 건술기술연구원, 고려대학교, 연세대학교에 X밴드 이중편파레이더가 도입되어 서울 지역에서의 수재해 감시 역할을 수행하고 있다. X밴드 이중편파레이더는 반사도, 차등반사도, 차등위상차, 비차등위상차 등 다양한 레이더 편파변수들을 제공하고 있다. 이중 비차등위상차는 감쇄와 부분차폐의 영향을 받지 않아 비차등위상차로부터 추정된 레이더 강우는 큰 강우 강도에서 정확도가 높은 것으로 알려져 있다. 본 연구에서는 이러한 비차등위상차로부터 추정된 레이더 강우량에 대한 정확도를 평가하였다. 이를 위해 2013년부터 2016년까지 관측된 건설기술연구원 X밴드 이중편파레이더 자료(42개 강우사례)를 활용하였다.
Kim, Soo Jun;Kwon, Young Soo;Lee, Keon Haeng;Kim, Hung Soo
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.2B
/
pp.159-167
/
2010
The purpose of this study is to get the adjusted radar rainfalls by ANN(Artificial Neural Network) method. In the case of radar rainfall, it has an advantage of spatial distribution characteristics of rainfall while point rainfall has an advantage at the point. Therefore we adjusted the radar rainfall by ANN method considering the advantages of two rainfalls of radar and point. This study constructed two ANN models of Model I and Model II for radar rainfall adjustment. We collected the three rainfall events and adjusted the radar rainfall for Anseong-cheon basin. The two events were inputted into the Modeland Model to derive the optimum parameters and the rest event was used for validation. The adjusted radar rainfalls by ANN method and the raw radar rainfall were used as the input data of ModClark model which is a semi-distributed model to simulate the runoff. As the results of the simulation, the runoff by raw radar rainfall were overestimated but the peak time and peak runoff from the adjusted rainfall by ANN were well fitted to the observed hydrograph.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.5
/
pp.819-826
/
2020
The UHF band wind profiler radars of the Korea Meteorological Administration (KMA), which produces the vertical profile of the wind, need to be calibrated for better performance. The capabilities of the radar in detecting even light precipitation were used for the calibration of which reference takes the hourly series of ground rainfall rate measured by a rain gauge at the radar site. This calibration must be renewed regularly according to the methodology implemented in this work since errors occur on the wind vectors in the clear sky without reflectivity calibration. Comparing the wind by wind profiler with that by radiosonde, the optimal radar constant contributed to the improvement of wind accuracy.
Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.
In this study, we estimate parameters of a distributed hydrologic model, GRM (grid based rainfall-runoff model), using a model-independent parameter estimation tool, PEST. We implement auto calibration of model parameters such as initial soil moisture, multipliers of overland roughness and soil hydraulic conductivity in the Geumho River Catchment and the Gamcheon Catchment using radar rainfall estimates and ground-observed rainfall represented by Thiessen interpolation. Automatic calibration is performed by GRM-MP (multiple projects), a modified version of GRM without GUI (graphic user interface) implementation, and "Parallel PEST" to improve estimation efficiency. Although ground rainfall shows similar or higher cumulative amount compared to radar rainfall in the areal average, high spatial variation is found only in radar rainfall. In terms of accuracy of hydrologic simulations, radar rainfall is equivalent or superior to ground rainfall. In the case of radar rainfall, the estimated multiplier of soil hydraulic conductivity is lower than 1, which may be affected by high rainfall intensity of radar rainfall. Other parameters such as initial soil moisture and the multiplier of overland roughness do not show consistent trends in the calibration results. Overall, calibrated parameters show different patterns in radar and ground rainfall, which should be carefully considered in the rainfall-runoff modelling applications using radar rainfall.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.