FAM의 기본적인 구상은 해석 하고자하는 선형 또는 비선형 편미분 방정식을 국부적으로 해석 적인 해를 구하여 이용하자는 것이다. 그러기 위하여 유한차분법(FDM)과 유한변분법(FEM)에 서와 같이 전체유동장을 작은 요소로 나누고 그 요소 내에서 국부해를 구한 다음 이들 요소를 중첩시킴으로써 각 요소의 미지수에 대한 대수식을 얻어서 수치해를 구하자는 것이다. 그러나 FDM에서와 같이 국부요소에서 미분항을 구하지 않고, FEM 에서와 같이 요소에서 형상함수를 도입하지 않는 상태에서 해석적인 해를 구하고 있기 때문에 수치해석에서 얻어지는 미분양들은 비교적 정확하게 구해진다. 따라서 Navier-Stokes 방정식이나 에너지 방정식에서 최고차항이 작은 파라메타, 즉 레이놀즈수나 피크리수의 역수로 곱하여서 있는 경우에도 안정된 해를 구할 수 있다고 알려져 있다. 요소자체의 계수를 구하는 데는 계산시간이 많이 소요되지만 수치해석 상의 안정성이나 수렴성이 좋기 때문에 전체계산시간은 오히려 적게 걸리는 경우도 있다고 한다.
This paper shows a performance analysis for conical type sealless cylinders and rod bearings. The pistons without seal have partly cylindrical and conical shapes. 2 dimensional Reynolds equation and FD(finite differential) numerical techniques are utilized for the performance analysis. The relationship among self-centering forces and leakage flows are investigated. Also, optimal design values for a sealless cylinder are presented. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was manufactured respectively. Leakage flow test is conducted to evaluate performance of piston and rod bearing in sealless cylinder.
It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.
일반적으로 식생흐름의 층 적분 모형은 층의 수에 따라 2층 및 3층 모형으로 구분한다. 즉, 전체 수심을 식생영역과 상부영역으로 구분하는 2층 모형과 식생영역을 바닥 조도의 영향 유무에 따라 내부 및 외부 식생영역으로 구분하는 3층 모형으로 나뉜다. 본 연구에 사용된 수리실험 자료는 기존의 연세대학교에서 수행한 실험결과를 이용하여 각 모형의 정확성을 예측해 보았다. 다양한 실험조건에 적용한 결과, 3층 모형이 식생영역에서 유속의 변화를 고려할 수 있지만 레이놀즈응력의 영향에 민감하고, 적분된 유속은 2층 모형에 의한 예측 결과가 더욱 정확하였다. 3층 모형에서는 내부 식생영역의 결과는 전체흐름구조에 미미한 영향을 미치므로 무시할 수 있으며, 이를 바탕으로 식생영역에서 유속 변화가 고려되는 수정 2층 모형을 제시하였다. 본 연구를 통하여 기존의 2층 모형과 3층 모형의 장점을 취합하여 수정된 2층 모형의 방정식을 바탕으로 모형의 정확성을 평가하기 위하여 2층 모형, 3층 모형, 수정 2층 모형의 유속 분포를 비교 분석하여 모형을 검증하였다.
변장비의 변화에 따른 타원형 실린더 주위의 유동장을 해석하기 위하여 Navier-Stokes 방정식을 사용한 EDISON 열유체 툴로 분석하였다. 본 논문은 기존의 연구와 비교 분석하는데 목적을 두었으며, 기존의 연구결과와 비교 분석하기 위하여 계산 영역을 동일하게 설정하였다. 타원형 실린더의 변장비를 0.5, 1, 2, 4로 변화시키고 레이놀즈수 200, 400, 1000인 조건하에 유동장을 해석하였다. 본 연구의 해석 결과를 통해 선행연구와 전체적인 경향이 같다는 것을 알 수 있었고, 또한 변장비와 레이놀즈수는 항력진폭과 양력진폭, 스트로할 수에 영향을 미침을 알 수 있었다.
본 연구에서는 비정렬 격자계에서 가장 많이 쓰이는 근사 해법 중에 하나인 LU 기법의 Navier-Stokse 방정식에 대한 수렴성 및 안정성에 관한 연구를 수행하였다. 적절한 스칼라 모델 방정식을 사용하여 LU 기법이 갖는 고유한 특성에 관한 해석적 논의를 수행하였으며, 이를 Navier-Stokes 방정식으로 확장하여 해석하였다. 그 결과 LU 기법의 강성도는 격자 종횡비가 높아짐에 띠라, 그리고 격자 레이놀즈 수 감소함에 따라 증가하게 된다. 또한 내부반복계산을 통해서 이러한 강성도가 부분적으로 극복될 수 있음을 보였으며, 평판 난류 유동 해석을 통해서 해석 결과를 검증하였다.
본 연구에서는 공기분자간 평균 자유비형거리(molecular mean free path)를 고려한 수정된 레이놀즈 방정식을 공기막 두께의 미소 교란항에 대하여 전개하여 비선 형 정적 평형방정식과 교란 미분방ㄹ정식을 구하였다. 비선형 정적 평형방정식을 슬 라이더의 정량적인 거동형태를 표시하므로 이를 이용하여 슬라이더의 정적특성을 구할 수 있다. 이에 반하여, 동적 교란미분 방정식은 슬라이더의 간극함수에 대한 각종 교란에 의하여 유발되는 반발압력을 정성적으로 나타내므로, 슬라이더의 외부교란에 대한 응답특성 및 자기복원특성 등을 구할 수 있다. 이러한 특성을 서스펜션에 부착 된 헤드 시스템의 운동방정식에 함께 고려하여 시스템의 동적 특성을 해석하고 슬라이 더의 설계변수가 이에 미치는 영향을 고찰하고저 한다.
The Reynolds equation is commonly used to investigate the lubrication characteristics of a spool valve. However, the applicability of the Reynolds equation is questionable for analyzing a spool valve because cavitation often occurs in the grooves of the valve and the depth of a groove is much higher than the clearance in most cases. In this study, the validity of the Reynolds equation in the spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and those obtained from the Navier-Stokes equation. The results are compared in terms of the lateral forces, friction forces, and volume flow rates (leakages). A significant difference of more than 20% is found in the lateral forces in cases where cavitation occurs and there are many grooves. Therefore, the Navier-Stokes equation should be used to investigate the lubrication characteristics of a spool valve when cavitation occurs and when the spool valve contains many grooves.
This paper proposes a method to calculate pressure and flow of the fluid dynamic bearings (FDBs) with a recirculation channel (RC) by solving the Reynolds and the Hagen-Poiseuille equations at the same time. The Hagen-Poiseuille equation is one-dimensional equation which describes the flow in a circular pipe such as the RC. This research developed a finite element program to solve the Reynolds and the Hagen-Poiseuille equation together. The proposed method was applied to calculate the pressure and flow of the FDBs which are composed of grooved or plain journal and thrust bearings, and RC. To verify the proposed method, it also developed a finite volume model of the FDBs, and pressure and flow were calculated by the commercial CFD solver. They agree well with the pressure and flow calculated by the proposed method. Finally, this research investigated the characteristics of the FDBs due to the radius change of the RC.
In a spool valve analysis, the Reynolds equation is commonly used to investigate the lubrication characteristics. However, the validity of the Reynolds equation is questionable in a spool valve analysis because cavitation often occurs in the groove and the depth of the groove is much higher than the clearance in most cases. Therefore, the validity of the Reynolds equation in a spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and the Navier-Stokes equation. Dimensionless parameters are determined from a nondimensional form of the governing equations. The differences between the lateral force, friction force, and volume flow rate (leakage) obtained by the Reynolds equation and those obtained by the Navier-Stokes equation are discussed. It is shown that there is little difference (less than 10%), except in the case of a spool valve with many grooves where no cavitation occurs in the grooves. In most cases, the Reynolds equation is effective for a spool valve analysis under a no cavitation condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.