Proceedings of the Computational Structural Engineering Institute Conference
/
2004.10a
/
pp.411-418
/
2004
Using a level set method we develop a shape optimization method applied to energy flow problems in steady state. The boundaries are implicitly represented by the level set function obtainable from the 'Hamilton-Jacobi type' equation with the 'Up-wind scheme.' The developed method defines a Lagrangian function for the constrained optimization. It minimizes a generalized compliance, satisfying the constraint of allowable volume through the variations of implicit boundary. During the optimization, the boundary velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian function. Compared with the established topology optimization method, the developed one has no numerical instability such as checkerboard problems and easy representation of topological shape variations.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.741-744
/
2014
디비피디아 온톨로지는 위키피디아에서 구조화된 데이터를 추출한 지식 베이스이다. 이러한 지식 베이스의 자동 증강은 웹을 구조화하는 속도를 증가시키는데 큰기여를 할 수 있다. 본 연구에서는 한국어 디비피디아를 기반으로 새로운 트리플을 입력받아 기존의 지식 베이스를 자동 증강시키는 시스템을 소개한다. 스키마를 자동 증강하는 두 가지 알고리즘은 최하위 레벨인 인스턴스가 지닌 프로퍼티, 즉 rdf-triple 단위에서 진행되었다. 알고리즘을 사용한 결과 첫째, 확률적 격상 방법을 통해 단계별로 입력받는 인스턴스와 하위 클래스의 프로퍼티를 이용하여 상위 클래스의 스키마가 정교해졌다. 둘째, 이를 바탕으로 타입 분류가 되어 있지 않았던 인스턴스들이 가장 가까운 타입에 자동 분류되었다. 지식 베이스가 정교해지면서 재분류된 인스턴스와 새로운 트리플셋을 바탕으로 두 가지 알고리즘은 반복적으로 작동하며, 한국어 디비피디아 지식 베이스의 자동 증강을 이루었다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.5
/
pp.7-14
/
2021
Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.
In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.
Journal of the Korea Society of Computer and Information
/
v.26
no.6
/
pp.19-28
/
2021
Nowadays, interest in health care is increasing due to Coronavirus (COVID-19), and a lot of people are doing home training as there are more difficulties in using fitness centers and public facilities that are used together. In this paper, we propose a personalized exercise recommendation algorithm using personalized propensity information to provide more accurate and meaningful exercise recommendation to home training users. Thus, we classify the data according to the criteria for obesity with a k-nearest neighbor algorithm using personal information that can represent individuals, such as eating habits information and physical conditions. Furthermore, we differentiate the exercise dataset by the level of exercise activities. Based on the neighborhood information of each dataset, we provide personalized exercise recommendations to users through a dimensionality reduction algorithm (SVD) among model-based collaborative filtering methods. Therefore, we can solve the problem of data sparsity and scalability of memory-based collaborative filtering recommendation techniques and we verify the accuracy and performance of the proposed algorithms.
To enhance immersive experiences for metaverse environements, background music is often used. However, the background music is mostly pre-matched and repeated which might occur a distractive experience to users as it does not align well with rapidly changing user-interactive contents. Thus, we implemented a system to provide a more immersive metaverse conversation experience by 1) developing a regression neural network that extracts emotions from an utterance using KEMDy20, the Korean multimodal emotion dataset 2) selecting music corresponding to the extracted emotions from an utterance by the DEAM dataset where music is tagged with arousal-valence levels 3) combining it with a virtual space where users can have a real-time conversation with avatars.
Jang Ju-Wook;Lee Mi-Sook;Mohanty Sumit;Choi Seonil;Prasanna Viktor K.
The KIPS Transactions:PartA
/
v.12A
no.5
s.95
/
pp.451-460
/
2005
We present a methodology to design energy-efficient data paths using FPGAs. Our methodology integrates domain specific modeling, coarse-grained performance evaluation, design space exploration, and low-level simulation to understand the tradeoffs between energy, latency, and area. The domain specific modeling technique defines a high-level model by identifying various components and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a family of architectures and corresponding algorithms for a given application kernel. The high-level model also consists of functions for estimating energy, latency, and area that facilitate tradeoff analysis. Design space exploration(DSE) analyzes the design space defined by the domain and selects a set of designs. Low-level simulations are used for accurate performance estimation for the designs selected by the DSE and also for final design selection We illustrate our methodology using a family of architectures and algorithms for matrix multiplication. The designs identified by our methodology demonstrate tradeoffs among energy, latency, and area. We compare our designs with a vendor specified matrix multiplication kernel to demonstrate the effectiveness of our methodology. To illustrate the effectiveness of our methodology, we used average power density(E/AT), energy/(area x latency), as themetric for comparison. For various problem sizes, designs obtained using our methodology are on average $25\%$ superior with respect to the E/AT performance metric, compared with the state-of-the-art designs by Xilinx. We also discuss the implementation of our methodology using the MILAN framework.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.11-19
/
2021
An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.
Oh, Kyeong Taek;Shin, Cheung Soo;Kim, Jeongmin;Yoo, Sun Kook
Journal of Korea Multimedia Society
/
v.20
no.9
/
pp.1491-1501
/
2017
In this paper, we propose a method to measure respiration rate by dividing the respiration related region in depth image using level set method. In the conventional method, the respiration related region was separated using the pre-defined region designated by the user. We separate the respiration related region using level set method combining shape prior knowledge. Median filter and clipping are performed as a preprocessing method for noise reduction in the depth image. As a feasibility test, respiration activity was recorded using depth camera in various environments with arm movements or body movements during breathing. Respiration activity was also measured simultaneously using a chest belt to verify the accuracy of calculated respiration rate. Experimental results show that our proposed method shows good performance for respiration rate estimation in various situation compared with the conventional method.
No, Si-Jae;Lee, Hye-Min;Cho, So-Eun;Lee, Doh-Youn;Moon, Yoo-Jin
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.217-218
/
2021
본 논문에서는 다층 퍼셉트론을 활용하여 League of Legends 게임의 승패를 예측하는 Deep Neural Network 프로그램을 설계하는 방법을 제안한다. 연구 방법으로 한국 서버의 챌린저 리그에서 행해진 약 26000 경기 데이터 셋을 분석하여, 경기 도중 15분 데이터 중 드래곤 처치 수, 챔피언 레벨, 정령, 타워 처치 수가 게임 결과에 유의미한 영향을 끼치는 것을 확인하였다. 모델 설계는 softmax 함수보다 sigmoid 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 LOL의 프로 게임 16경기를 예측한 결과 93.75%의 정확도를 도출했다. 게임 평균시간이 34분인 것을 고려하였을 때, 게임 중반 정도에 게임의 승패를 예측할 수 있음이 증명되었다. 본 논문에서 설계한 이 프로그램은 전 세계 E-sports 프로리그의 승패예측과 프로팀의 유용한 훈련지표로 활용 가능하다고 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.